<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
GUO De-yong, ZHAO Jie-chao, Lü Peng-fei, ZHU Tong-gong. Effective fracture zone under deep-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2019, 41(5): 582-590. doi: 10.13374/j.issn2095-9389.2019.05.004
Citation: GUO De-yong, ZHAO Jie-chao, Lü Peng-fei, ZHU Tong-gong. Effective fracture zone under deep-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2019, 41(5): 582-590. doi: 10.13374/j.issn2095-9389.2019.05.004

Effective fracture zone under deep-hole cumulative blasting in coal seam

doi: 10.13374/j.issn2095-9389.2019.05.004
More Information
  • Corresponding author: GUO De-yong, E-mail: kjkfg@cumtb.edu.cn
  • Received Date: 2018-12-12
  • Publish Date: 2019-05-01
  • Deep-hole directional cumulative-blasting cracking technology has unique advantages for improving coal seam permeability. This paper was concerned with the range of the effective fracture zone under cumulative blasting using a linear-shaped charge in a coal seam. Based on the analysis of the mechanism of the directional cumulative-blasting in coal seams, the response characteristics of the coal under the coupled effects of the blasting-induced shock wave, stress wave, detonation gas and the energy-cumulative effect, and the partition characteristics of the crack in the cumulative-blasting-affected area were studied by theoretical analysis; moreover, a numerical analysis model of cumulative blasting was established, and the propagation distribution characteristics and range of coal seam fracture under cumulative blasting were investigated through numerical simulation. The results of the theoretical analysis and simulation show that the cumulative-blasting-affected area can be divided into crushed, crack, and elastic-deformation zones; further, the crack zone can be divided into crack-intensive and main crack-propagation zones according to the type and number of cracks. Additionally, a partition model for the influence of deep-hole cumulative blasting with linear-shaped charge in coal seams was constructed. Meanwhile, under the influence of the shaped-charge structure, the crushed zone has an oval-like shape with a small radius in the direction of the shaped-charge jet, while the crack-intensive and main crack-propagation zones have oval-like shapes with a larger radius in the direction of the shaped-charge jet. In addition, field experiments of deep-hole cumulative blasting with linear-shaped charge in coal seams were carried out and the experimental results show that the influence of the cumulative blasting on the increase of the coal-seam-gas volume fraction in each observation hole weakened in a step-wise manner (strong-medium-weak) with increasing distance from the blasting borehole; this is consistent with the partition model of the constructed cumulative blasting, i.e., the cumulative-blasting-affected area has certain zoning characteristics, and the crushed, crack-intensive, and main crack-propagation zones are the main components of the effective fracture zone.

     

  • loading
  • [1]
    郭德勇, 趙杰超, 張超, 等. 煤層深孔聚能爆破控制孔作用機制研究. 巖石力學與工程學報, 2018, 37(4): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804014.htm

    Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804014.htm
    [2]
    龔敏, 劉萬波, 王德勝, 等. 提高煤礦瓦斯抽放效果的控制爆破技術. 北京科技大學學報, 2006, 28(3): 223 doi: 10.3321/j.issn:1001-053X.2006.03.005

    Gong M, Liu W B, Wang D S, et al. Controlled blasting technique to improve gas pre-drainage effect in a coal mine. J Univ Sci Technol Beijing, 2006, 28(3): 223 doi: 10.3321/j.issn:1001-053X.2006.03.005
    [3]
    郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破動力效應分析與應用. 工程科學學報, 2016, 38(12): 1681 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612004.htm

    Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612004.htm
    [4]
    劉健, 劉澤功, 高魁, 等. 深孔定向聚能爆破增透機制模擬試驗研究及現場應用. 巖石力學與工程學報, 2014, 33(12): 2490 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412014.htm

    Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412014.htm
    [5]
    穆朝民, 王海露, 黃文堯, 等. 高瓦斯低透氣性煤體定向聚能爆破增透機制. 巖土力學, 2013, 34(9): 2496 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309010.htm

    Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309010.htm
    [6]
    Kutter H K, Fairhurst C. On the fracture process in blasting. Int J Rock Mech Min Sci Geomech Abstracts, 1971, 8(3): 181 doi: 10.1016/0148-9062(71)90018-0
    [7]
    陳士海, 王明洋, 趙躍堂, 等. 巖石爆破破壞界面上的應力時程研究. 巖石力學與工程學報, 2003, 22(11): 1784 doi: 10.3321/j.issn:1000-6915.2003.11.006

    Chen S H, Wang M Y, Zhao Y T, et al. Time-stress history on interface between cracked and uncracked zones under rock blasting. Chin J Rock Mech Eng, 2003, 22(11): 1784 doi: 10.3321/j.issn:1000-6915.2003.11.006
    [8]
    郭德勇, 呂鵬飛, 裴海波, 等. 煤層深孔聚能爆破裂隙擴展數值模擬. 煤炭學報, 2012, 37(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202023.htm

    Guo D Y, Lü P F, Pei H B, et al. Numerical simulation on crack propagation of coal bed deep-hole cumulative blasting. J China Coal Soc, 2012, 37(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202023.htm
    [9]
    宗琦. 巖石內爆炸應力波破裂區半徑的計算. 爆破, 1994(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO402.005.htm

    Zong Q. Calculation of radius of cracked zone in rock by blast-induced stress wave. Blasting, 1994(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO402.005.htm
    [10]
    高金石, 張繼春. 爆破破巖機理動力分析. 金屬礦山, 1989(9): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198909001.htm

    Gao J S, Zhang J C. Dynamic analysis of fracturing mechanism of rock under explosion. Met Mine, 1989(9): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198909001.htm
    [11]
    戴俊. 柱狀裝藥爆破的巖石壓碎圈與裂隙圈計算. 遼寧工程技術大學學報(自然科學版), 2001, 20(2): 144 doi: 10.3969/j.issn.1008-0562.2001.02.005

    Dai J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion. J Liaoning Tech Univ Nat Sci Ed, 2001, 20(2): 144 doi: 10.3969/j.issn.1008-0562.2001.02.005
    [12]
    Esen S, Onederra I, Bilgin H A. Modelling the size of the crushed zone around a blasthole. Int J Rock Mech Min Sci, 2003, 40(4): 485 doi: 10.1016/S1365-1609(03)00018-2
    [13]
    Far M S, Wang Y. Probabilistic analysis of crushed zone for rock blasting. Comput Geotech, 2016, 80: 290 doi: 10.1016/j.compgeo.2016.08.025
    [14]
    Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 doi: 10.1016/j.ijrmms.2006.09.002
    [15]
    Zhu W C, Wei C H, Li S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min Sci, 2013, 59: 179 doi: 10.1016/j.ijrmms.2012.11.004
    [16]
    Yilmaz O, Unlu T. Three dimensional numerical rock damage analysis under blasting load. Tunnelling Underground Space Technol, 2013, 38: 266 doi: 10.1016/j.tust.2013.07.007
    [17]
    Dehghan Banadaki M M, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng, 2012, 40-41: 16 doi: 10.1016/j.ijimpeng.2011.08.010
    [18]
    來興平, 崔峰, 曹建濤, 等. 特厚煤體爆破致裂機制及分區破壞的數值模擬. 煤炭學報, 2014, 39(8): 1642 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408036.htm

    Lai X P, Cui F, Cao J T, et al. Extra-thick coal blasting mechanism and numerical simulation of partition failure. J China Coal Soc, 2014, 39(8): 1642 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408036.htm
    [19]
    王文龍. 鉆眼爆破. 北京: 煤炭工業出版社, 1984

    Wang W L. Hole Blasting. Beijing: China Coal Industry Publishing House, 1984
    [20]
    夏祥, 李俊如, 李海波, 等. 廣東嶺澳核電站爆破開挖巖體損傷特征研究. 巖石力學與工程學報, 2007, 26(12): 2510 doi: 10.3321/j.issn:1000-6915.2007.12.017

    Xia X, Li J R, Li H B, et al. Study on damage characteristics of rock mass under blasting load in Ling'ao nuclear power station, Guangdong Province. Chin J Rock Mech Eng, 2007, 26(12): 2510 doi: 10.3321/j.issn:1000-6915.2007.12.017
    [21]
    Yang Y Q, Gao Q C, Yu M S, et al. Experimental study of mechanism and technology of directed crack blasting. J China Univ Min Technol, 1995, 5(2): 69 http://www.cnki.com.cn/Article/CJFDTotal-ZHKD199502008.htm
    [22]
    Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput Methods Appl Mech Eng, 1986, 55(3): 301 doi: 10.1016/0045-7825(86)90057-5
    [23]
    Grady D E, Kipp M E. Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min Sci Geomech Abstracts, 1980, 17(3): 147 doi: 10.1016/0148-9062(80)91361-3
    [24]
    劉文軒. 斷裂控制爆破開采石材機理的研究. 爆炸與沖擊, 1993, 13(2): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ199302003.htm

    Liu W X. Studies on the mechanism of fracture control blasting for mining rock materials. Explosion Shock Waves, 1993, 13(2): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ199302003.htm
    [25]
    褚懷保. 煤體爆破作用機理及試驗研究[學位論文]. 焦作: 河南理工大學, 2011

    Chu H B. Theoretical and Experimental Studies on Coal Blasting Action Mechanism[Dissertation]. Jiaozuo: Henan Polytechnic University, 2011
    [26]
    Hallquist J O. LS-DYNA Keyword User's Manual (Version 971). Livermore: Livermore Software Technology Corporation, 2007
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (929) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频