Citation: | XU Juan-ping, FU Hao, WANG Zheng, YAN Yu, LI Jin-xu. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. doi: 10.13374/j.issn2095-9389.2019.05.002 |
[1] |
Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11): 1391 doi: 10.1016/S0749-6419(00)00015-2
|
[2] |
Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 doi: 10.1179/1743284714Y.0000000722
|
[3] |
Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 doi: 10.1016/j.msea.2015.11.103
|
[4] |
Wang C, Cao W Q, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A, 2013, 562: 89 doi: 10.1016/j.msea.2012.11.044
|
[5] |
Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 doi: 10.1016/j.scriptamat.2013.02.010
|
[6] |
Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 doi: 10.1016/j.msea.2016.08.119
|
[7] |
Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 doi: 10.1016/j.scriptamat.2012.09.030
|
[8] |
Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 doi: 10.1016/j.msea.2012.09.083
|
[9] |
Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel. Mater Sci Eng A, 2013, 583: 84 doi: 10.1016/j.msea.2013.06.067
|
[10] |
Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn). Mater Sci Eng A, 2012, 532: 435 doi: 10.1016/j.msea.2011.11.009
|
[11] |
Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 doi: 10.1016/j.actamat.2014.10.032
|
[12] |
Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mater Sci Eng A, 2011, 528(22-23): 6661 doi: 10.1016/j.msea.2011.05.039
|
[13] |
Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 doi: 10.1016/j.msea.2015.12.057
|
[14] |
Lee S, De Cooman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 doi: 10.1002/srin.201500038
|
[15] |
Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater, 2014, 77: 236 doi: 10.1016/j.actamat.2014.05.057
|
[16] |
Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 doi: 10.1016/j.msea.2015.05.061
|
[17] |
Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
|
[18] |
Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel. Materials, 2014, 7(12): 7891 doi: 10.3390/ma7127891
|
[19] |
Hanamura T, Torizuka S, Sunahara A, et al. Excellent total mechanical-properties-balance of 5% Mn, 30000 MPa% steel. ISIJ Int, 2011, 51(4): 685 doi: 10.2355/isijinternational.51.685
|
[20] |
Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater, 2015, 84: 229 doi: 10.1016/j.actamat.2014.10.052
|
[21] |
Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A, 2014, 45(12): 5624 doi: 10.1007/s11661-014-2504-x
|
[22] |
Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A, 2017, 688: 40 doi: 10.1016/j.msea.2017.01.063
|
[23] |
Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
|
[24] |
Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 doi: 10.1016/j.msea.2016.11.036
|
[25] |
Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 doi: 10.1007/s11661-015-2854-z
|
[26] |
Hu J, Cao W Q, Wang C Y, et al. Phase transformation behavior of cold rolled 0.1C-5Mn steel during heating process studied by differential scanning calorimetry. Mater Sci Eng A, 2015, 636: 108 doi: 10.1016/j.msea.2015.03.080
|
[27] |
Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
|
[28] |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
|
[29] |
Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 doi: 10.1016/j.actamat.2014.11.010
|
[30] |
Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Acta Mater, 2014, 78: 369 doi: 10.1016/j.actamat.2014.07.005
|
[31] |
da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 doi: 10.1016/j.actamat.2016.11.013
|
[32] |
Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel. Acta Mater, 2016, 108: 219 doi: 10.1016/j.actamat.2016.02.001
|
[33] |
Han J, da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 doi: 10.1016/j.actamat.2016.09.048
|
[34] |
Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 doi: 10.1126/science.aab2633
|
[35] |
Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt. % medium Mn steel. Acta Mater, 2015, 86: 182 doi: 10.1016/j.actamat.2014.12.021
|
[36] |
Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
|
[37] |
Ryu J H, Kim S K, Lee C S, et al. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Proc R Soc A, 2013, 469(2149): 20120458 doi: 10.1098/rspa.2012.0458
|
[38] |
Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 doi: 10.1007/s11661-011-1007-2
|
[39] |
Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe-Mn-C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 doi: 10.1016/j.corsci.2014.02.018
|
[40] |
Park I J, Jeong K H, Jung J G, et al. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels. Int J Hydrogen Energy, 2012, 37(12): 9925 doi: 10.1016/j.ijhydene.2012.03.100
|
[41] |
Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
|
[42] |
Ryu J H. Hydrogen Embrittlement in TRIP and TWIP Steel[Dissertation]. Pohang: Pohang University of Science and Technology, 2012
|
[43] |
Leslie W C, Rauch G C. Precipitation of carbides in low-carbon Fe-Al-C alloys. Metall Trans A, 1978, 9(3): 343 doi: 10.1007/BF02646383
|
[44] |
Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A, 2010, 41(2): 397 doi: 10.1007/s11661-009-0124-7
|
[45] |
Ryu J H, Kim D I, Kim H S, et al. Strain partitioning and mechanical stability of retained austenite. Scripta Mater, 2010, 63(3): 297 doi: 10.1016/j.scriptamat.2010.04.020
|
[46] |
Yang F, Luo H W, Hu C D, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel. Mater Sci Eng A, 2017, 685: 115 doi: 10.1016/j.msea.2016.12.119
|
[47] |
Lee S, Estrin Y, De Cooman B C. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans A, 2013, 44(7): 3136 doi: 10.1007/s11661-013-1648-4
|
[48] |
吳彥欣. TWIP鋼的疲勞行為及延遲斷裂研究[學位論文]. 北京: 北京科技大學, 2015
Wu Y X. Research of Low Cycle Fatigue and Delayed Fracture Behavior of TWIP Steel[Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[49] |
Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Trans, 1972, 3(4): 905 doi: 10.1007/BF02647665
|
[50] |
Chen J, Lü M Y, Liu Z Y, et al. Combination of ductility and toughness by the design of fine ferrite/tempered martensite-austenite microstructure in a low carbon medium manganese alloyed steel plate. Mater Sci Eng A, 2015, 648: 51 doi: 10.1016/j.msea.2015.09.032
|
[51] |
Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 doi: 10.1016/j.msea.2016.11.048
|
[52] |
Sun B H, Fazeli F, Scott C, et al. Critical role of strain partitioning and deformation twinning on cracking phenomenon occurring during cold rolling of two duplex medium manganese steels. Scripta Mater, 2017, 130: 49 doi: 10.1016/j.scriptamat.2016.11.009
|
[53] |
Gibbs P J, De Moor E, Merwin M J, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A, 2011, 42(12): 3691 doi: 10.1007/s11661-011-0687-y
|
[54] |
Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater, 2014, 79: 268 doi: 10.1016/j.actamat.2014.07.020
|
[55] |
Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater, 2014, 65: 251 doi: 10.1016/j.actamat.2013.10.067
|
[56] |
Han J, Lee Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater, 2014, 67: 354 doi: 10.1016/j.actamat.2013.12.038
|
[57] |
Gibbs P J, De Cooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel. Mater Sci Eng A, 2014, 609: 323 doi: 10.1016/j.msea.2014.03.120
|
[58] |
Luo L B, Li W, Wang L, et al. Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater Sci Eng A, 2017, 682: 698 doi: 10.1016/j.msea.2016.11.017
|
[59] |
Speer J, Matlock D K, De Cooman B C, et al, Carbon partitioning into austenite after martensite transformation. Acta Mater, 2003, 51, 2611 doi: 10.1016/S1359-6454(03)00059-4
|
[60] |
Seo E J, Cho L, De Cooman B C. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater, 2016, 107: 354 doi: 10.1016/j.actamat.2016.01.059
|
[61] |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater, 2016, 113: 124 doi: 10.1016/j.actamat.2016.04.048
|
[62] |
褚武揚, 喬利杰, 李金許, 等. 氫脆和應力腐蝕. 北京: 科學出版社, 2013
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion. Beijing: Science Press, 2013
|
[63] |
Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels. Corros Sci, 2017, 125: 114 doi: 10.1016/j.corsci.2017.06.012
|
[64] |
Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater, 2016, 113: 1 doi: 10.1016/j.actamat.2016.04.038
|
[65] |
Wang M M, Tasan C C, Koyama M, et al. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite. Metall Mater Trans A, 2015, 46(9): 3797 doi: 10.1007/s11661-015-3009-y
|
[66] |
Laureys A, Depover T, Petrov R, et al. Characterization of hydrogen induced cracking in TRIP-assisted steels. Int J Hydrogen Energy, 2015, 40(47): 16901 doi: 10.1016/j.ijhydene.2015.06.017
|
[67] |
Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels. Corros Sci, 2014, 82: 218 doi: 10.1016/j.corsci.2014.01.022
|
[68] |
Callahan M, Hubert O, Hild F, et al. Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels. Mater Sci Eng A, 2017, 704: 391 doi: 10.1016/j.msea.2017.08.042
|
[69] |
Jeong T K, Jung G, Lee K, et al. Selective oxidation of Al rich Fe-Mn-Al-C low density steels. Mater Sci Technol, 2014, 30(14): 1805 doi: 10.1179/1743284713Y.0000000485
|
[70] |
Choi J Y, Hwang S W, Park K T. Twinning-induced plasticity aided high ductile duplex stainless steel. Metall Mater Trans A, 2013, 44(2): 597 doi: 10.1007/s11661-012-1579-5
|
[71] |
Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 doi: 10.1016/j.scriptamat.2014.07.019
|
[72] |
Lee Y K, Choi C. Driving force for γ→ε, martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 doi: 10.1007/s11661-000-0271-3
|
[73] |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A, 1975, 6(4): 791 doi: 10.1007/BF02672301
|
[74] |
Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels. Mater Sci Eng A, 2014, 591: 90 doi: 10.1016/j.msea.2013.10.088
|
[75] |
Aydin H, Essadiqi E, Jung I H, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions. Mater Sci Eng A, 2013, 564: 501 doi: 10.1016/j.msea.2012.11.113
|
[76] |
Han J, Lee S J, Lee C Y, et al. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Mater Sci Eng A, 2015, 633: 9 doi: 10.1016/j.msea.2015.02.075
|
[77] |
Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate. Mater Sci Eng A, 2016, 675: 153 doi: 10.1016/j.msea.2016.07.104
|