<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001
Citation: SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001

Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area

doi: 10.13374/j.issn2095-9389.2019.04.23.001
More Information
  • Corresponding author: E-mail: liujm@ustb.edu.cn
  • Received Date: 2019-04-23
  • Publish Date: 2020-03-01
  • Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples (n = 14) and local dominant terrestrial plants (n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry (ICP?MS) was applied to analyze the concentrations of vanadium (V), chromium (Cr), arsenic (As), and cadmium (Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method. The enrichment capabilities of plants for the four heavy metals were also analyzed. Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River. The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr, As, and Cd exceed the limit by approximately 2 times, which make the soil in the raw ore stacking area heavily contaminated. The soils in the six other sampling sites in the smelter are polluted in different degrees. The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine, Erigeron multifolius, and Erigeron annuus have the highest tolerance capability for the four heavy metals. Conyza canadensis, Imperata cylindrica, Solanum photeinocarpum, Dendranthema indicum, Trifolium repens, and Echinochloa crusgalli are the hyperaccumulators for V, Cr, and Cd. The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high. Moreover, Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd, Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V, and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically. The pot experiments of five local dominant terrestrial plants illustrate that, under the composite heavy metal contaminant conditions, Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.

     

  • loading
  • [1]
    Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019, 174: 714 doi: 10.1016/j.ecoenv.2019.02.068
    [2]
    楊志英, 張建珠, 李春苑, 等. 土壤重金屬污染及其修復技術研究現狀. 綠色科技, 2018(22):62

    Yang Z Y, Zhang J Z, Li C Y, et al. Research of soil heavy metal pollution and the remediation technology. J Green Sci Technol, 2018(22): 62
    [3]
    李曉寶, 董煥煥, 任麗霞, 等. 螯合劑修復重金屬污染土壤聯合技術研究進展. 環境科學研究, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html

    Li X B, Dong H H, Ren L X, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals. Res Environ Sci, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html
    [4]
    王星, 郭斌, 王欣. 重金屬污染土壤修復技術研究進展. 煤炭與化工, 2019, 42(1):156

    Wang X, Guo B, Wang X. Research progress on remediation technology of heavy metal contaminated soil. Coal Chem Ind, 2019, 42(1): 156
    [5]
    付廣義, 邱亞群, 宋博宇, 等. 東江湖鉛鋅礦渣堆場優勢植物重金屬富集特征. 中南林業科技大學學報, 2019, 39(4):117

    Fu G Y, Qiu Y Q, Song B Y, et al. Heavy metals enrichment characteristics of the dominant plants in lead-zinc slag yard along Dongjiang lake reservoir. J Cent South Univ Forest Technol, 2019, 39(4): 117
    [6]
    Wang Z H, Liu X Y, Qin H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Explor, 2019, 200: 159 doi: 10.1016/j.gexplo.2019.02.005
    [7]
    朱業安, 黃德超, 廖曉峰, 等. 鈾礦區污染土壤上植物資源調研. 江西科學, 2012, 30(5):620 doi: 10.3969/j.issn.1001-3679.2012.05.018

    Zhu Y A, Huang D C, Liao X F, et al. A survey of plant resources in the contaminated soil of uranium mine. Jiangxi Sci, 2012, 30(5): 620 doi: 10.3969/j.issn.1001-3679.2012.05.018
    [8]
    豐楠. 草本植物對土壤重金屬的富集研究. 環境科學與管理, 2015, 40(7):138 doi: 10.3969/j.issn.1673-1212.2015.07.037

    Feng N. Enrichment of herbaceous plants on soil heavy metal. Environ Sci Manage, 2015, 40(7): 138 doi: 10.3969/j.issn.1673-1212.2015.07.037
    [9]
    Kersten G, Majestic B, Quigley M. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf, 2017, 137: 225 doi: 10.1016/j.ecoenv.2016.12.001
    [10]
    Pilipovic A, Zalesny Jr. R S, Roncevic S, et al. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage, 2019, 239: 352 doi: 10.1016/j.jenvman.2019.03.072
    [11]
    曾鵬, 郭朝暉, 肖細元, 等. 構樹修復對重金屬污染土壤環境質量的影響. 中國環境科學, 2018, 38(7):2639 doi: 10.3969/j.issn.1000-6923.2018.07.033

    Zeng P, Guo Z H, Xiao X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals. China Environ Sci, 2018, 38(7): 2639 doi: 10.3969/j.issn.1000-6923.2018.07.033
    [12]
    劉威, 束文圣, 藍崇鈺. 寶山堇菜(Viola baoshanensis)??一種新的鎘超富集植物. 科學通報, 2003, 48(19):2046 doi: 10.3321/j.issn:0023-074X.2003.19.009

    Liu W, Shu W S, Lan C Y. Viola baoshanensis?A new hyperaccumulator for cadmium. Chin Sci Bull, 2003, 48(19): 2046 doi: 10.3321/j.issn:0023-074X.2003.19.009
    [13]
    謝景千, 雷梅, 陳同斌, 等. 蜈蚣草對污染土壤中As、Pb、Zn、Cu的原位去除效果. 環境科學學報, 2010, 30(1):165

    Xie J Q, Lei M, Chen T B, et al. Phytoremediation of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: a field study. Acta Sci Circum, 2010, 30(1): 165
    [14]
    Chandrasekhar C, Ray J G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf, 2019, 171: 26 doi: 10.1016/j.ecoenv.2018.12.058
    [15]
    莫福孝. 三峽庫區消落帶土壤重金屬污染特征及植物修復技術研究[學位論文]. 重慶: 重慶交通大學, 2014

    Mo F X. Study on the Feature of Heavy Metal Pollution and Phytoremediation in Three Gorges Reservoir[Dissertation]. Chongqing: Chongqing Jiaotong University, 2014
    [16]
    高鳳杰, 鞠鐵男, 吳嘯, 等. 黑土耕作層土壤pH空間變異及自相關分析. 土壤, 2018, 50(3):566

    Gao F J, Ju T N, Wu X, et al. Spatial variability and autocorrelation analysis of pH in a mollisol tillage area of Northeast China. Soils, 2018, 50(3): 566
    [17]
    Zhu H, Bing H J, Wu Y H, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation. Sci Total Environ, 2019, 664: 79 doi: 10.1016/j.scitotenv.2019.02.016
    [18]
    安志裝, 陳同斌, 雷梅, 等. 蜈蚣草耐鉛、銅、鋅毒性和修復能力的研究. 生態學報, 2003, 23(12):2594 doi: 10.3321/j.issn:1000-0933.2003.12.013

    An Z Z, Chen T B, Lei M, et al. Tolerance of Pteris vittata L. to Pb, Cu and Zn. Acta Ecol Sin, 2003, 23(12): 2594 doi: 10.3321/j.issn:1000-0933.2003.12.013
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article views (1509) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频