<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
SONG Lei, WANG Min, LI Xin, GAO Zhen-bo, LI Xiao-hu, BAO Yan-ping. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006
Citation: SONG Lei, WANG Min, LI Xin, GAO Zhen-bo, LI Xiao-hu, BAO Yan-ping. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006

Manganese migration behavior in the RH vacuum process of manganese-containing steel

doi: 10.13374/j.issn2095-9389.2019.04.08.006
More Information
  • Corresponding author: E-mail: worldmind@163.com
  • Received Date: 2019-04-08
  • Publish Date: 2020-03-01
  • The Ruhrstahl Heraeus (RH) refining furnace is a piece of important secondary refining equipment that is widely used in the production of special steel owing to its high efficiency of degassing, decarburization, and de-intercalation. However, molten steel that has a high alloy content will encounter key problems in the vacuum treatment process, and the loss of volatile alloying elements in the molten steel is considerable, resulting in the nodulation of the molten steel vacuum splashing and secondary oxidation of the subsequent molten steel. To address the problems of elemental loss and vacuum splashing caused by manganese (Mn) gasification during the vacuum processing of manganese-containing steel using RH, the variation and migration behavior of Mn in molten steel under different vacuum treatment conditions of 120 t RH were examined. This study analyzed the relationship between manganese elemental loss and its volatilization and vacuum splattering, and it was verified in an anatomical experiment of the nodule at different positions inside the RH vacuum chamber. The results show that elemental Mn in the molten steel shows obvious loss during the vacuum process of RH, and the loss in the early stage of the vacuum process is the largest. The composition of manganese oxide in the nodule of the RH vacuum chamber is as high as 14%–70%, and the thermodynamic calculation results show that temperature, the content of Mn in the steel, and the degree of vacuum have a considerable influence on the volatilization behavior of Mn, which is the key influencing factor for manganese migration during the vacuum process. By improving the vacuum pressure drop mode, a stepwise vacuum is used to reduce the loss of elemental Mn from the original 2×10?4 to 1×10?4. The results have considerable significance for on-site production, and steel can be effectively restrained by improving the vacuum pressure drop mode. Additionally, the splashing and volatilization of liquid reduces the loss of the alloying element Mn.

     

  • loading
  • [1]
    Li Y H, Bao Y P, Wang M, et al. Influence of process conditions during Ruhrstahl-Hereaeus refining process and effect of vacuum degassing on carbon removal to ultra-low levels. Ironmaking Steelmaking, 2015, 42(5): 366 doi: 10.1179/1743281214Y.0000000236
    [2]
    趙立華, 郭建龍, 徐佳亮, 等. RH真空室內氣泡行為的研究. 工程科學學報, 2018, 40(4):453

    Zhao L H, Guo J L, Xu J L, et al. Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl-Heraeus. Chin J Eng, 2018, 40(4): 453
    [3]
    李應江, 高海潮, 吳耀光, 等. 超低碳鋼爐外精煉工藝的優化. 煉鋼, 2010, 26(5):11

    Li Y J, Gao H C, Wu Y G, et al. Optimization of secondary refining process for ultra-low carbon steel. Steelmaking, 2010, 26(5): 11
    [4]
    Yoshioka T, Nakahata K, Kawamura T, et al. Factors to determine inclusion compositions in molten steel during the secondary refining process of case-hardening steel. ISIJ Int, 2016, 56(11): 1973 doi: 10.2355/isijinternational.ISIJINT-2016-324
    [5]
    Wang M, Bao Y P, Zhao L H, et al. Difference analysis in steel cleanness between two RH treatment modes for SPHC grade. ISIJ Int, 2015, 55(8): 1652 doi: 10.2355/isijinternational.ISIJINT-2015-027
    [6]
    雷輝, 楊森祥, 黃登華. RH脫碳過程噴濺控制的工藝優化// 第十五屆全國煉鋼學術會議文集. 廈門, 2008:276

    Lei H, Yang S X, Huang D H. The control of decarburization process spitting is optimize // Proceedings of the 15th Steelmaking Academic Conference. Xiamen, 2008: 276
    [7]
    吳全明. RH真空爐脫碳過程噴濺的控制. 真空, 2012, 49(5):21 doi: 10.3969/j.issn.1002-0322.2012.05.006

    Wu Q M. The control of splashing in decarburization process of RH furnace. Vacuum, 2012, 49(5): 21 doi: 10.3969/j.issn.1002-0322.2012.05.006
    [8]
    湛文龍, 吳鏗, 付平, 等. COREX熔融氣化爐Rist操作線的建立和應用. 北京科技大學學報, 2013, 35(4):448

    Zhan W L, Wu K, Fu P, et al. Establishment and application of the Rist operating line for the COREX melter gasifier. J Univ Sci Technol Beijing, 2013, 35(4): 448
    [9]
    于月光, 陳伯平, 王玉剛, 等. 鋼真空感應熔煉過程痕量元素揮發的動力學. 北京科技大學學報, 1993, 15(6):549

    Yu Y G, Chen B P, Wang Y G, et al. Evaporation dynamics of trace elements during vacuum induction melting of steel. J Univ Sci Technol Beijing, 1993, 15(6): 549
    [10]
    張延玲, 付中華, 李士琦, 等. 熔渣中Zn、Pb揮發行為的對比分析. 北京科技大學學報, 2007, 29(增刊2): 73

    Zhang Y L, Fu Z H, Li S Q, et al. Comparative analysis on the vaporization behavior of zinc and lead in molten slag system. J Univ Sci Technol Beijing, 2007, 29(Suppl 2): 73
    [11]
    于月光, 陳伯平, 王玉剛, 等. 真空感應熔煉過程中微量Bi的揮發. 北京科技大學學報, 1994, 16(6):522

    Yu Y G, Chen B P, Wang Y G, et al. Evaporation of trace bismuth during vacuum melting of steel. J Univ Sci Technol Beijing, 1994, 16(6): 522
    [12]
    孔令種, 鄧志銀, 朱苗勇. 中高錳鋼在真空精煉過程中的氣化行為. 特殊鋼, 2018, 39(4):17 doi: 10.3969/j.issn.1003-8620.2018.04.005

    Kong L Z, Deng Z Y, Zhu M Y. Vaporization behaviors of manganese in medium and high Mn steel grades during vacuum treatment. Special Steel, 2018, 39(4): 17 doi: 10.3969/j.issn.1003-8620.2018.04.005
    [13]
    趙躍萍, 張金柱. 熔融錳鐵高溫揮發的實驗研究. 鐵合金, 2002, 33(4):18 doi: 10.3969/j.issn.1001-1943.2002.04.006

    Zhao Y P, Zhang J Z. Study on the evaporation of molten ferromanganese at high temperature. Ferro-alloys, 2002, 33(4): 18 doi: 10.3969/j.issn.1001-1943.2002.04.006
    [14]
    Geng D Q, Lei H, He J C. Effect of traveling magnetic field on flow, mixing, decarburization and inclusion removal during RH refining process. ISIJ Int, 2012, 52(6): 1036 doi: 10.2355/isijinternational.52.1036
    [15]
    吳杰, 任彤. RH鋼水環流控制技術. 重型機械, 2005(3):4 doi: 10.3969/j.issn.1001-196X.2005.03.002

    Wu J, Ren T. The technique of circumfluence control for molten steel in RH. Heavy Machinery, 2005(3): 4 doi: 10.3969/j.issn.1001-196X.2005.03.002
    [16]
    王世俊, 董元箎. 錳鐵熔體中磷和錳的熱力學性質. 鋼鐵研究學報, 1996, 8(2):1

    Wang S J, Dong Y C. Thermodynamic properties of phosphorus and manganese in ferromanganese melts. J Iron Steel Res, 1996, 8(2): 1
    [17]
    Ryan H F, Suiter J. Further comments on stacking faults in tungsten. J Less Common Met, 1966, 10(5): 371
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views (1504) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频