Citation: | ZHOU Hao, CHENG Yi, ZHOU Ming-xi, NI Yu-guo. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3[J]. Chinese Journal of Engineering, 2020, 42(1): 70-77. doi: 10.13374/j.issn2095-9389.2019.04.08.005 |
[1] |
吳勝利, 陳東峰, 趙成顯, 等. 不同料層高度燒結過程尾氣排放規律. 北京科技大學學報, 2010, 32(2):164
Wu S L, Chen D F, Zhao C X, et al. Exhaust emission law at different bed depth sintering process. J Univ Sci Technol Beijing, 2010, 32(2): 164
|
[2] |
馮祥, 張忠孝, 楊斌, 等. 風量對燒結煙氣成分影響的實驗研究. 中國冶金, 2015, 25(4):28
Feng X, Zhang Z X, Yang B, et al. Experimental study of the ventilation volume’s influence on the composition of sintering flue gas. China Metall, 2015, 25(4): 28
|
[3] |
Fan X H, Yu Z Y, Gan M, et al. Appropriate technology parameters of iron ore sintering process with flue gas recirculation. ISIJ Int, 2014, 54(11): 2541 doi: 10.2355/isijinternational.54.2541
|
[4] |
梁飛雪, 朱華青, 秦張峰, 等. 一氧化碳低溫催化氧化. 化學進展, 2008, 20(10):1453
Liang F X, Zhu H Q, Qin Z F, et al. Low-temperature catalytic oxidation of carbon monoxide. Prog Chem, 2008, 20(10): 1453
|
[5] |
胡玲, 張海東, 王小菡, 等. CO催化氧化催化劑活性成分研究進展. 材料導報, 2016, 30(11):46
Hu L, Zhang H D, Wang X H, et al. Active components of the catalysts for catalytic oxidation of CO. Mater Rev, 2016, 30(11): 46
|
[6] |
Satsuma A, Osaki K, Yanagihara M, et al. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B, 2013, 132-133: 511 doi: 10.1016/j.apcatb.2012.12.025
|
[7] |
Choi J, Shin C B, Suh D J. Co-promoted Pt catalysts supported on silica aerogel for preferential oxidation of CO. Catal Commun, 2008, 9(5): 880 doi: 10.1016/j.catcom.2007.09.036
|
[8] |
Li S Y, Liu G, Lian H L, et al. Low-temperature co oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal Commun, 2008, 9(6): 1045 doi: 10.1016/j.catcom.2007.10.016
|
[9] |
Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J Catal, 2006, 237(1): 1 doi: 10.1016/j.jcat.2005.10.014
|
[10] |
Zhu H G, Liang C D, Yan W F, et al. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J Phys Chem B, 2006, 110(22): 10842 doi: 10.1021/jp060637q
|
[11] |
Qian K, Huang W X, Jiang Z Q, et al. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J Catal, 2007, 248(1): 137 doi: 10.1016/j.jcat.2007.02.010
|
[12] |
張曉東, 曲振平, 于芳麗, 等. 納米銀催化劑上CO氧化反應研究進展. 催化學報, 2013, 34(7):1277
Zhang X D, Qu Z P, Yu F L, et al. Progress in carbon monoxide oxidation over nano-sized Ag catalysts. Chin J Catal, 2013, 34(7): 1277
|
[13] |
Zhang X D, Qu Z P, Li X Y, et al. Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in-situ “pH-adjusting” method. Catal Commun, 2011, 16(1): 11 doi: 10.1016/j.catcom.2011.08.030
|
[14] |
李力成, 王昌松, 馬璇璇, 等. 一種具有CO催化氧化穩定性的金銅雙金屬/介孔氧化鈦催化劑. 催化學報, 2012, 33(11):1778
Li L C, Wang C S, Ma X X, et al. An Au?Cu bimetal catalyst supported on mesoporous TiO2 with stable catalytic performance in CO oxidation. Chin J Catal, 2012, 33(11): 1778
|
[15] |
Luo M F, Fang P, He M, et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A Chem, 2005, 239(1-2): 243 doi: 10.1016/j.molcata.2005.06.029
|
[16] |
Kondrat S A, Davies T E, Zu Z L, et al. The effect of heat treatment on phase formation of copper manganese oxide: influence on catalytic activity for ambient temperature carbon monoxide oxidation. J Catal, 2011, 281(2): 279 doi: 10.1016/j.jcat.2011.05.012
|
[17] |
Ramesh K, Chen L W, Chen F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal Today, 2008, 131(1-4): 477 doi: 10.1016/j.cattod.2007.10.061
|
[18] |
Frey K, Iablokov V, Sáfrán G, et al. Nanostructured MnOx as highly active catalyst for CO oxidation. J Catal, 2012, 287: 30 doi: 10.1016/j.jcat.2011.11.014
|
[19] |
Lou Y, Wang L, Zhao Z Y, et al. Low-temperature CO oxidation over Co3O4-based catalysts: significant promoting effect of Bi2O3, on Co3O4 catalyst. Appl Catal B, 2014, 146: 43 doi: 10.1016/j.apcatb.2013.06.007
|
[20] |
Jiang D E, Dai S. The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation. Phys Chem Chem Phys, 2011, 13: 978 doi: 10.1039/C0CP01138J
|
[21] |
Liu X J, Liu J F, Chang Z, et al. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal Commun, 2011, 12(6): 530 doi: 10.1016/j.catcom.2010.11.016
|
[22] |
Wagloehner S, Reichert D, Leon-Sorzano D, et al. Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. J Catal, 2008, 260(2): 305 doi: 10.1016/j.jcat.2008.09.018
|
[23] |
Jia A P, Jiang S Y, Lu J Q, et al. Study of catalytic activity at the CuO?CeO2 interface for CO oxidation. J Phys Chem C, 2010, 114(49): 21605 doi: 10.1021/jp108556u
|
[24] |
Sedmak G, Ho?evar S, Levec J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2?y catalyst. J Catal, 2003, 213(2): 135 doi: 10.1016/S0021-9517(02)00019-2
|
[25] |
張秋林, 徐利斯, 劉昕, 等. P123軟模板對CuO?CeO2結構及其CO催化氧化性能的影響. 無機化學學報, 2015, 31(8):1555
Zhang Q L, Xu L S, Liu X, et al. Effect of P123 on structure and CO catalytic oxidation performance of CuO?CeO2 catalysts. Chin J Inorg Chem, 2015, 31(8): 1555
|
[26] |
Tang C W, Kuo C C, Kuo M C, et al. Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over CeO2/Co3O4 catalysts. Appl Catal A, 2006, 309(1): 37 doi: 10.1016/j.apcata.2006.04.020
|
[27] |
陳然, 高曉亞, 王晶, 等. Ce改性Fe2O3催化劑對CO催化氧化的影響. 化工進展, 2017, 36(10):210
Chen R, Gao X Y, Wang J, et al. Effect of Ce addition on Fe2O3 catalyst towards CO catalytic oxidation. Chem Ind Eng Prog, 2017, 36(10): 210
|
[28] |
聶春. 富氫氣體中金屬整體式催化劑制備及CO選擇性氧化性能研究[學位論文]. 天津: 天津大學, 2008
Nie C. Preparation and Study of Metallic Monolithic Catalysts for Preferential CO Oxidation in Excess Hydrogen [Dissertation]. Tianjin: Tianjin University, 2008
|
[29] |
顧兵, 何申富, 姜創業. SDA脫硫工藝在燒結煙氣脫硫中的應用. 環境工程, 2013, 31(2):53
Gu B, He S F, Jiang C Y. Application of spray drying absorption (SDA) In desulphurization of sintering flue gas. Environ Eng, 2013, 31(2): 53
|