<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
TONG He-jun, FU Dong-mei. Edge detection method of retinal optical coherence tomography images based onimmune genetic morphology[J]. Chinese Journal of Engineering, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015
Citation: TONG He-jun, FU Dong-mei. Edge detection method of retinal optical coherence tomography images based on immune genetic morphology[J]. Chinese Journal of Engineering, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015

Edge detection method of retinal optical coherence tomography images based on immune genetic morphology

doi: 10.13374/j.issn2095-9389.2019.04.015
More Information
  • Corresponding author: FU Dong-mei, E-mail: fdm_ustb@ustb.edu.cn
  • Received Date: 2018-03-01
  • Publish Date: 2019-04-15
  • Optical coherence tomography (OCT) is an indispensable tool used for the diagnosis and identification of ocular fundus disease and nondestructive, rapid, and high-resolution imaging of the living retinas. The attendant research focuses on the development of computer-aided methods to help ophthalmologists make judgments regarding the morphological changes of retinal tissue and acquire tissue characteristic parameters. Realizing the segmentation of retinal tissue in OCT images is the key aspect of this kind of research. Mathematical morphology, which has been widely used in the fields of image detection, shape analysis, pattern recognition, and computer vision, uses different structural elements to measure, extract, analyze, and identify image targets. However, traditional morphological structure elements cannot be adaptively changed on the basis of the structural characteristics of the images. In this study, an algorithm for generating morphological adaptive structural elements was proposed on the basis of an immune genetic algorithm, which the detection of retinal tissue edges in optical coherence tomography (OCT) images was applied. First, the image is preprocessed by denoising and coarse segmentation and then the image is divided into several sub-images. Second, the adaptive structure elements are computed using an immune genetic algorithm for each sub-image. A string of binary numbers of fixed length is initially randomly generated as an antibody and then converted into a format of structural element. The fitness of an antibody is defined by the two-dimensional entropy of the image and the optimal antibody and structural elements are identified according to the structural characteristics of the subimage itself. Finally, with these optimal structural elements, morphological edge detection is performed to obtain the segmentation results of each sub-image combined with those of each sub-graph to realize the extraction of the target boundary of the whole image. The experimental results show the proposed method to be effective in the boundary extraction of images.

     

  • loading
  • [1]
    Haralick R M, Sternberg S R, Zhuang X H. Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell, 1987, 9(4): 532 http://europepmc.org/abstract/MED/21869411
    [2]
    劉艷莉, 桂志國. 基于形態學的可變權值匹配自適應圖像增強算法. 電子與信息學報, 2014, 36(6): 1285 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201406003.htm

    Liu Y L, Gui Z G. Adaptive image enhancement algorithm with variable weighted matching based on morphology. J Electron Inform Technol, 2014, 36(6): 1285 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201406003.htm
    [3]
    Zhou S B, Shen A Q, Li G F. Concrete image segmentation based on multiscale mathematic morphology operators and Otsu method. Adv Mater Sci Eng, 2015, 2015(11): 208473
    [4]
    Lee S H, Lee C. Multiscale morphology based illumination normalization with enhanced local textures for face recognition. Expert Syst Appl, 2016, 62: 347 doi: 10.1016/j.eswa.2016.06.039
    [5]
    Wang J G, Gao D Y.Improved morphological TOP-HAT filter optimized with genetic algorithm//Proceedings of the 2009 2nd International Congress on Image and Signal Processing (CISP).Tianjin, 2009: 1
    [6]
    Babu K R, Sunitha K V N. Image de-noising and enhancement for salt and pepper noise using genetic algorithm-morphological operations. Int J Signal Image Process, 2013, 4(1): 36 http://www.researchgate.net/publication/236166772_Image_De-noising_and_Enhancement_for_Salt_and_Pepper_Noise_using_Genetic_Algorithm-Morphological_Operations
    [7]
    Erc?al T, ?zcan E, Asta S.Soft morphological filter optimization using a genetic algorithm for noise elimination//Proceedings of 2014 14th UK Workshop on Computational Intelligence.Bradford, 2014: 1
    [8]
    Jiang D H, Hua G. Research on image enhancement method based on adaptive immune genetic algorithm. J Comput Theor Nanosci, 2015, 12(1): 119 doi: 10.1166/jctn.2015.3707
    [9]
    陳麗安, 張培銘. 免疫遺傳算法在MATLAB環境中的實現. 福州大學學報(自然科學版), 2004, 32(5): 554 doi: 10.3969/j.issn.1000-2243.2004.05.010

    Chen L A, Zhang P M. Realization of immune genetic algorithm in MATLAB. J Fuzhou Univ Nat Sci, 2004, 32(5): 554 doi: 10.3969/j.issn.1000-2243.2004.05.010
    [10]
    劉燕妮, 張貴倉, 安靜. 基于柔性形態學的抗噪彩色圖像邊緣檢測. 蘭州大學學報(自然科學版), 2016, 52 (1): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201601023.htm

    Liu Y N, Zhang G C, An J. Noise-resistance in color image edge detection based on flexible morphology. J Lanzhou Univ Nat Sci, 2016, 52(1): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201601023.htm
    [11]
    Bhima K, Jagan A.Analysis of MRI based brain tumor identification using segmentation technique//Proceedings of 2016 International Conference on Communication and Signal Processing.Melmaruvathur, 2016: 2109
    [12]
    Michikawa T, Suzuki H, Moriguchi M, et al. Automatic extraction of endocranial surfaces from CT images of crania. PloS One, 2017, 12(4): e0168516 http://europepmc.org/abstract/MED/28406901
    [13]
    徐黛麗, 譚榮強, 丁瓊, 等. 眼底黃斑部疾病篩查中OCT的應用. 中醫臨床研究, 2016, 8(32): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYLY201632064.htm

    Xu D L, Tan R Q, Ding Q, et al. Screening ocular fundus macular diseases with OCT. Clin J Chin Med, 2016, 8(32): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYLY201632064.htm
    [14]
    Li Y J, Zhang J W, Wang M N. Improved BM3D denoising method. IET Image Process, 2017, 11(12): 1197 doi: 10.1049/iet-ipr.2016.1110
    [15]
    Chiu S J, Allingham M J, Mettu P S, et al. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Exp, 2015, 6(4): 1172 doi: 10.1364/BOE.6.001172
    [16]
    Fu D M, Tong H J, Zheng S, et al. Retinal status analysis method based on feature extraction and quantitative grading in OCT images. Biomed Eng Online, 2016, 15(1): 87 doi: 10.1186/s12938-016-0206-x
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (896) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频