<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
XU Gang, LI Min, XU Jin-wu, JIA Chun-hu, CHEN Zhao-fu. Control technology of end-point carbon in converter steelmaking based on functional digital twin model[J]. Chinese Journal of Engineering, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013
Citation: XU Gang, LI Min, XU Jin-wu, JIA Chun-hu, CHEN Zhao-fu. Control technology of end-point carbon in converter steelmaking based on functional digital twin model[J]. Chinese Journal of Engineering, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013

Control technology of end-point carbon in converter steelmaking based on functional digital twin model

doi: 10.13374/j.issn2095-9389.2019.04.013
More Information
  • Corresponding author: LI Min, E-mail:limin@ustb.edu.cn
  • Received Date: 2018-07-23
  • Publish Date: 2019-04-15
  • An important part of the iron-and-steel production process, converter steelmaking is the most widely used and efficient method of steelmaking in the world. Under the requirements of"China Manufacturing 2025, "ensuring intelligent steelmaking, improving smelting production efficiency, and reducing production cost are major concerns that should be addressed urgently in converter steelmaking. Owing to the complex thermodynamic and dynamic reactions in the converter smelting process, sublance control and traditional flue-gas analysis models have limitations that result in low prediction accuracy of the end-point carbon in converter smelting, thereby causing the main technical bottleneck in intelligent steelmaking. Therefore, a functional digital twin model of the steelmaking process based on flue-gas analysis was proposed. First, continuously monitored real-time data were obtained by flue gas analysis to observe the carbon and oxygen reaction state of molten steel in the converter. Then, according to various stages of the converter reaction, the functional data analysis method was used to establish the functional prediction models for the early and late stages of blowing. The greatest advantage of the method is that the model can automatically adjust the coefficient function according to the measured off-gas data by using a continuous functional curve to fit the complex dynamic reaction process. Therefore, the proposed model can accurately predict not only the normal smelting process but also the decarburization and carbon drawing process for the secondary scraping slag. An industrial experiment on a 260 t converter was conducted to prove that the functional digital twin model of the converter smelting process has good self-learning and self-adaptive ability and is robust to the abnormal smelting state. Furthermore, the model can predict the carbon content of the converter dynamically in the entire process and the end-point carbon content can reach 95% at ± 0. 02%. Using the predicted value of the carbon content to control the final blowing point through the functional digital twin model can effectively prevent overblowing or underblowing. More importantly, on the premise of guaranteeing the stability of raw material composition, temperature, weight, and other parameters, the model is expected to cancel the blown-off sampling step based on sublance. This feature can reduce the production cost while improving the product quality and production efficiency for a wide range of industrial applications.

     

  • loading
  • [1]
    Aacatech-National Academy of Science and Engineering. CyberPhysical Systems: Driving Force for Innovations in Mobility, Health, Energy and Production. Berlin: Springer Publishing Company, 2012
    [2]
    Lee E A.CPS foundations//Design Automation Conference.Anaheim, 2010: 737
    [3]
    殷瑞鈺. 關于智能化鋼廠的討論—從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm

    Yin R Y. A discussion on"smart"steel plant-view from physical system side. Iron Steel, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm
    [4]
    China Information Physics System Development Forum.White Paper on Information Physics Systems [J/OL].Cyber Physical Systems (2017-03-02) [2018-07-20].http://www.cesi.cn/201703/2251.html 中國信息物理系統發展論壇. 信息物理系統白皮書[J/OL]. 信息物理系統(2017-03-02) [2018-07-20]. http://www.cesi.cn/201703/2251.html
    [5]
    張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm

    Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm
    [6]
    Sun X Y, Wang X, Wu J W, et al. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems. Chin J Mech Eng, 2014, 27(3): 488 doi: 10.3901/CJME.2014.03.488
    [7]
    Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008
    [8]
    Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: a case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
    [9]
    徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm

    Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm
    [10]
    王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm

    Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm
    [11]
    Liao D S, Sun S, Waterfall S, et al.Integrated KOBM steelmaking process control//Oxygen Steelmaking.Beijing, 2015: 107
    [12]
    吳令, 姜周華, 龔偉, 等. 通過煙氣分析實現轉爐連續控制. 煉鋼, 2008, 24(1): 12

    Wu L, Jiang Z H, Gong W, et al. Continuous control of BOF by gas analysis. Steelmaking, 2008, 24(1): 12
    [13]
    謝書明, 陶鈞, 柴天佑. 基于神經網絡的轉爐煉鋼終點控制. 控制理論與應用, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm

    Xie S M, Tao J, Chai T Y. BOF steelmaking endpoint control based on neural network. Control Theory Appl, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm
    [14]
    Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines. J Iron Steel Res Int, 2007, 14(2): 20 doi: 10.1016/S1006-706X(07)60021-1
    [15]
    韓敏, 趙耀, 楊溪林, 等. 基于魯棒相關向量機的轉爐煉鋼終點預報模型. 控制理論與應用, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm

    Han M, Zhao Y, Yang X L, et al. Endpoint prediction model of basic oxygen furnace steelmaking based on robust relevance vector machines. Control Theory Appl, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm
    [16]
    Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Ed. New York: Springer, 2005
    [17]
    Morris J S. Functional regression. Ann Rev Stat Appl, 2015, 2: 321 doi: 10.1146/annurev-statistics-010814-020413
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1090) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频