Citation: | XIE Lu, AN Hao-jie, QIN Qin, ZANG Yong. Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films[J]. Chinese Journal of Engineering, 2019, 41(4): 497-504. doi: 10.13374/j.issn2095-9389.2019.04.010 |
[1] |
Xie L, Brault P, Thomann A L, et al. Molecular dynamic simulation of binary ZrxCu100-x metallic glass thin film growth. Appl Surf Sci, 2013, 274: 164 doi: 10.1016/j.apsusc.2013.03.004
|
[2] |
Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56(4): 379 doi: 10.1016/j.pmatsci.2010.12.002
|
[3] |
Zeman P, Zítek M, Zuzjaková ?, et al. Amorphous Zr-Cu thinfilm alloys with metallic glass behavior. J Alloys Compd, 2017, 696: 1298 doi: 10.1016/j.jallcom.2016.12.098
|
[4] |
Xu D H, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38. 2, 40 at. %) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater, 2004, 52(9): 2621 doi: 10.1016/j.actamat.2004.02.009
|
[5] |
Musil J, Daniel R. Structure and mechanical properties of magnetron sputtered Zr-Ti-Cu-N films. Surf Coat Technol, 2003, 166(2-3): 243 doi: 10.1016/S0257-8972(02)00819-8
|
[6] |
Eckert J, Das J, Kim K B, et al. High strength ductile Cu-base metallic glass. Intermetallics, 2006, 14(8-9): 876 doi: 10.1016/j.intermet.2006.01.003
|
[7] |
Karpe N, B?ttiger J, Krog J P, et al. Influence of deposition conditions and ion irradiation on thin films of amorphous Cu-Zr superconductors. Thin Solid Films, 1996, 275(1-2): 82 doi: 10.1016/0040-6090(95)07025-7
|
[8] |
Dudonis J, Bru?as R, Miniotas A. Synthesis of amorphous Zr-Cu alloys by magnetron co-sputtering. Thin Solid Films, 1996, 275(1-2): 164 doi: 10.1016/0040-6090(95)07033-8
|
[9] |
Apreutesei M, Djemia P, Belliard L, et al. Structural-elastic relationships of Zr-TL (TL=Cu, Co, Ni) thin films metallic glasses. J Alloys Compd, 2017, 707: 126 doi: 10.1016/j.jallcom.2016.12.208
|
[10] |
Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass[J/OL]. Physics (2013-06)[2018-07-28]. https://arxiv.org/pdf/1306.1575
|
[11] |
Xie L, Brault P, Bauchire J M, et al. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J Phys D Appl Phys, 2014, 47(22): 224004 doi: 10.1088/0022-3727/47/22/224004
|
[12] |
Hajlaoui K, Alsaleh N, Alrasheedi N H, et al. Coalescence and subsequent twinning of nanocrystals during deformation of CuZrbased metallic glasses: the grain size effect. J Non-Cryst Solids, 2017, 464: 39 doi: 10.1016/j.jnoncrysol.2017.03.019
|
[13] |
Sha Z D, Zhang Y W, Feng Y P, et al. Molecular dynamics studies of short to medium range order in Cu64Zr36 metallic glass. J Alloys Compd, 2011, 509(33): 8319 doi: 10.1016/j.jallcom.2011.05.071
|
[14] |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132(2-3): 233 doi: 10.1016/j.matchemphys.2011.11.021
|
[15] |
Tripathi M K, Chattopadhyay P P, Ganguly S. A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics, 2017, 90: 9 doi: 10.1016/j.intermet.2017.06.008
|
[16] |
Sha Z D, Feng Y P, Li Y. Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu-Zr metallic glasses. Appl Phys Lett, 2010, 96(6): 061903 doi: 10.1063/1.3310278
|
[17] |
Almyras G A, Lekka C E, Mattern N, et al. On the microstructure of the Cu65Zr35 and Cu35Zr65 metallic glasses. Scripta Mater, 2010, 62(1): 33 doi: 10.1016/j.scriptamat.2009.09.019
|
[18] |
Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass. Nature Commun, 2018, 9(1): 560 doi: 10.1038/s41467-018-02943-4
|
[19] |
Wu T W, Feng S D, Qi L, et al. The compressive behaviour after crystallisation in Zr85Cu15 metallic glasses studied by molecular dynamics simulations. J Non-Cryst Solids, 2017, 468: 41 doi: 10.1016/j.jnoncrysol.2017.04.024
|
[20] |
Zhong C, Zhang H, Cao Q P, et al. The size-dependent non-localized deformation in a metallic alloy. Scripta Mater, 2015, 101: 48 doi: 10.1016/j.scriptamat.2015.01.015
|
[21] |
Yang G J, Xu B, Kong L T, et al. Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. J Alloys Compd, 2016, 688: 88 http://www.sciencedirect.com/science/article/pii/S0925838816322149
|
[22] |
Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass. Nature Mater, 2007, 6: 735 doi: 10.1038/nmat1984
|
[23] |
劉美. ZrCu塊體非晶合金結構及力學性能的分子動力學模擬[學位論文]. 秦皇島: 燕山大學, 2012
Liu M. ZrCu Block Amorphous Alloy Structure and Mechanical Properties of Molecular Dynamics Simulation[Dissertation]. Qinhuangdao: Yanshan University, 2012
|
[24] |
張哲峰, 屈瑞濤, 劉增乾. 金屬玻璃的斷裂行為與強度理論研究進展. 金屬學報, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348
Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses. Acta Metall Sin, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348
|
[25] |
張哲峰, 伍復發, 范吉堂, 等. 非晶合金材料的變形與斷裂. 中國科學(G輯: 物理學力學天文學), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm
Zhang Z F, Wu F F, Fan J T, et al. Deformation and fracture of amorphous alloy materials. Sci China (Series G Phys Mech Astron), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm
|
[26] |
Utz M, Peng Q, Nandagopal M. Athermal simulation of plastic deformation in amorphous solids at constant pressure. J Polym Sci Part B Polym Phys, 2004, 42(11): 2057 doi: 10.1002/polb.20092
|
[27] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
|
[28] |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell Simul Mater Sci Eng, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012
|
[29] |
Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684 doi: 10.1063/1.448118
|
[30] |
Finney J L. Modelling the structures of amorphous metals and alloys. Nature, 1977, 266(5600): 309 doi: 10.1038/266309a0
|
[31] |
Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B, 1984, 29(12): 6443 doi: 10.1103/PhysRevB.29.6443
|
[32] |
Graves D B, Brault P. Molecular dynamics for low temperature plasma-surface interaction studies. J Phys D Appl Phys, 2009, 42(19): 194011 doi: 10.1088/0022-3727/42/19/194011
|
[33] |
Zhen S, Davies G J. Calculation of the Lennard-Jones n-m potential energy parameters for metals. Phys Status Solidi A, 1983, 78(2): 595 doi: 10.1002/pssa.2210780226
|
[34] |
Zhou H F, Zhong C, Cao Q P, et al. Non-localized deformation in metallic alloys with amorphous structure. Acta Mater, 2014, 68: 32 doi: 10.1016/j.actamat.2014.01.003
|
[35] |
Turchanin A A, Tomilin I A, Turchanin M A, et al. Enthalpies of formation of liquid and amorphous Cu-Zr alloys. J Non-Cryst Solids, 1999, 250-252: 582 doi: 10.1016/S0022-3093(99)00136-2
|
[36] |
葛麗, 惠希東, 陳國良, 等. Cu-Zr二元系非晶合金的玻璃形成能力預測. 物理化學學報, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm
Ge L, Hui X D, Chen G L, et al. Prediction of the glass forming ability of Cu-Zr binary alloys. Acta Phys-Chim Sin, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm
|
[37] |
Spaepen F. Five-fold symmetry in liquids. Nature, 2000, 408(6814): 781 doi: 10.1038/35048652
|