<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
LU Tao-li, FAN Shu-ting, LU Lin, MA Zheng, CHEN Heng. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties[J]. Chinese Journal of Engineering, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003
Citation: LU Tao-li, FAN Shu-ting, LU Lin, MA Zheng, CHEN Heng. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties[J]. Chinese Journal of Engineering, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003

Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties

doi: 10.13374/j.issn2095-9389.2019.04.01.003
More Information
  • As science and high-tech have developed, stealth technology has gained increasing prominence in the military field. Application of stealth technology can improve the survival, defense, and attack capabilities of military equipment, thus it has become a focus in the field of modern military science. As the core part of radar stealth technology, absorbing materials are widely required by various industries. For military equipment such as ships operating in the marine environment, absorptive coating can not only make the military equipment effectively invisible, but can also enhance the corrosion protection capability of the equipment itself. Once the surface of an absorptive coating is corroded, not only will its corrosion resistance become compromised, but its absorbing performance may also be affected, leading to threats and hidden dangers to the safety of the weapons and equipment. At present, most researchers are paying more attention to the effect of absorbent particles on absorbing properties during studies of absorptive coatings. However, after addition of absorbent particles, the effect of the absorptive coating on a material's absorbing properties is unknown when corrosion resistance is constantly changing. Therefore, research in this area is of great significance in selection of surface absorbing coatings for marine weapons and equipment. In this study, FeSiAl electromagnetic shielding coating, based on Q235 cold-rolled steel, was used as the experimental material. By changing curing conditions, the optimal curing environment for electromagnetic shielding coating was explored. At the same time, the neutral salt spray test, electromagnetic shielding performance test, and electrochemical impedance test were applied to study the variations in absorption and corrosion resistance of the coating after curing in natural conditions during the salt spray period. Results show that curing under an electromagnetic field can impair the corrosion resistance of the coating. Increasing the content of the absorbing agent was not conducive to improving the absorbing properties of the coating, and impaired the corrosion shielding properties of the coating. After the long-term salt spray test, absorbing properties of the coating decreased with decreasing corrosion shielding properties.

     

  • loading
  • [1]
    王連杰, 高煥方. 吸波涂料概述. 表面技術, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005

    Wang L J, Gao H F. Summarization of antiradar coatings. Surf Technol, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005
    [2]
    Wang D L, Sikora E, Shaw B. A study of the effects of filler particles on the degradation mechanisms of powder epoxy novolac coating systems under corrosion and erosion. Prog Org Coat, 2018, 121: 97 doi: 10.1016/j.porgcoat.2018.04.026
    [3]
    Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog Org Coat, 2009, 64(4): 371 doi: 10.1016/j.porgcoat.2008.07.023
    [4]
    Tong Y, Bohm S, Song M. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Appl Surf Sci, 2017, 424: 72 doi: 10.1016/j.apsusc.2017.02.081
    [5]
    Yang Z Q, Sun W, Wang L D, et al. Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corros Sci, 2016, 103: 312 doi: 10.1016/j.corsci.2015.10.039
    [6]
    Li S J, Sun W, Yang Z Q, et al. Influences of semiconductor oxide fillers on the corrosion behavior of metals under coatings. Electrochim Acta, 2018, 292: 425 doi: 10.1016/j.electacta.2018.08.116
    [7]
    謝迪, 韋紅余, 何敏, 等. 用于吸波材料的鐵磁性/碳材料復合物. 材料導報, 2017, 31(增刊2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm

    Xie D, Wei H Y, He M, et al. Ferromagnetic carbon-based composites for wave absorbing materials. Mater Rev, 2017, 31(Suppl 2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm
    [8]
    班國東, 劉朝輝, 葉圣天, 等. 鎳鐵合金/鐵包云母粉復合吸波涂層材料的頻散特性. 裝備環境工程, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm

    Ban G D, Liu Z H, Ye S T, et al. Dispersion properties on nickalloy/iron package mica powder composite absorbing coatings. Equip Environ Eng, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm
    [9]
    趙靈智, 胡社軍, 何琴玉, 等. 電磁屏蔽材料的屏蔽原理與研究現狀. 包裝工程, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001

    Zhao L Z, Hu S J, He Q Y, et al. Shielding principle and research progress of electromagnetic shielding materials. Packag Eng, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001
    [10]
    靳武剛. 碳纖維在電磁屏蔽材料中的應用研究. 高科技纖維與應用, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003

    Jin W G. Development and applications of carbon fiber in EMS composites. Hi-Tech Fiber Appl, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003
    [11]
    金丹, 祁遠東, 郭宇鵬, 等. 碳纖維/鐵硅鋁復合材料的低頻吸波性能. 材料導報, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm

    Jin D, Qi Y D, Guo Y P, et al. Absorbing properties of carbon fiber/FeSiAl composite in low frequency band. Mater Rev, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm
    [12]
    王濤, 位建強, 張釗琦, 等. 片形FeSiAl磁粉復合材料的雷達波吸收機理. 中國材料進展, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm

    Wang T, Wei J Q, Zhang Z Q, et al. Radar wave absorption mechanism of the flake-shaped FeSiAl particle composite. Mater China, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm
    [13]
    張永清, 丁耀根, 陰生毅, 等. FeSiAl微波衰減涂層電磁特性分析. 真空電子技術, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012

    Zhang Y Q, Ding Y G, Yin S Y, et al. Electrical and magnetic characteristic study of FeSiAl microwave attenuating coatings. Vac Electron, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012
    [14]
    Sun J, Xu H L, Shen Y, et al. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J Alloys Compd, 2013, 548: 18 doi: 10.1016/j.jallcom.2012.08.114
    [15]
    趙凱華, 陳熙謀. 電磁學. 4版. 北京: 高等教育出版社, 2018

    Zhao K H, Chen X M. Electromagnetism. 4th Ed. Beijing: Higher Education Press, 2018
    [16]
    王強, 王春江, 龐雪君, 等. 利用強磁場控制過共晶鋁硅合金的凝固組織. 材料研究學報, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002

    Wang Q, Wang C J, Pang X J, et al. Control of solidified structures of Al-Si hypereutectic alloy by using intense magnetic fields. Chin J Mater Res, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002
    [17]
    Goc K, Gaska K, Klimczyk K, et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J Magn Magn Mater, 2016, 419: 345 doi: 10.1016/j.jmmm.2016.06.046
    [18]
    Lee J Y, Kumar V, Lee D J. Compressive properties of magnetorheological elastomer with different magnetic fields and types of filler. Polym Adv Technol, 2019, 30(4): 1106 doi: 10.1002/pat.4544
    [19]
    Zhu Y S, Umehara N, Ido Y, et al. Computer simulation of structures and distributions of particles in MAGIC fluid. J Magn Magn Mater, 2006, 302(1): 96 doi: 10.1016/j.jmmm.2005.08.015
    [20]
    孫欣, 章禮斌, 孫浩楷, 等. 磁場中磁性顆粒運動機理的研究進展及應用領域. 礦山工程, 2017, 5(4): 114

    Sun X, Zhang L B, Sun H K, et al. Research progress and application field of magnetic particle motion mechanism in magnetic field. Mine Eng, 2017, 5(4): 114
    [21]
    Adams J D, Kim U, Soh H T. Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA, 2008, 105(47): 18165 doi: 10.1073/pnas.0809795105
    [22]
    Tokura S, Hara M, Kawaguchi N, et al. The behavior of nano-and micro-magnetic particles under a high magnetic field using a superconducting magnet. IEEE Trans Appl Supercond, 2014, 24(3): 3700305 http://ieeexplore.ieee.org/document/6650034/
    [23]
    Rodríguez-Arco L, López-López M T, Durán J D G, et al. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter, 2011, 23(45): 455101 doi: 10.1088/0953-8984/23/45/455101
    [24]
    Nagato K, Oshima T, Kuwayama A, et al. Microscopic observation of behavior of magnetic particle clusters during torque transfer between magnetic poles. J Appl Phys, 2015, 117(17): 17C729 doi: 10.1063/1.4916113
    [25]
    Ando T, Hirota N, Wada H. Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields. Sci Technol Adv Mater, 2009, 10(1): 014609 doi: 10.1088/1468-6996/10/1/014609
    [26]
    褚海榮, 陳平, 于祺, 等. FeCo/石墨烯的制備和吸波性能. 材料研究學報, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm

    Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/graphene. Chin J Mater Res, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm
    [27]
    王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002

    Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Devices, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002
    [28]
    劉祥萱, 陳鑫, 王煊軍, 等. 磁性吸波材料的研究進展. 表面技術, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm

    Liu X W, Chen X, Wang X J, et al. Recent progress in magnetic absorbing materials. Surf Technol, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (758) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频