<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
JIANG He, DONG Jian-xin, ZHANG Mai-cang. Hot extrusion characteristics and technique optimization for superalloy 617B tube[J]. Chinese Journal of Engineering, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008
Citation: JIANG He, DONG Jian-xin, ZHANG Mai-cang. Hot extrusion characteristics and technique optimization for superalloy 617B tube[J]. Chinese Journal of Engineering, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008

Hot extrusion characteristics and technique optimization for superalloy 617B tube

doi: 10.13374/j.issn2095-9389.2019.04.008
More Information
  • Corresponding author: JIANG He, E-mail:jianghe17@sina.cn
  • Received Date: 2018-04-11
  • Publish Date: 2019-04-15
  • Nickel-base superalloy 617B is one of the most promising candidates for superheater and reheater pipes of advanced ultra-supercritical (AUSC) power plants.Hot extrusion is a key process during the manufacturing of superalloy 617B pipes.However, the high content of alloying elements in superalloy 617B makes microstructure control difficult during the hot extrusion process.Furthermore, to date, no systematical theoretical investigation has been conducted in the hot extrusion process control of superalloy 617B.Hence, in this work, the hot extrusion process of superalloy 617B tube was studied by finite element simulation using DEFORM-2D finite element software.The microstructure evolution during hot extrusion was considered by combining the microstructure evolution model of superalloy 617B and finite element simulation software.The microstructure evolution model was programmed using FORTRAN language and was developed using the finite element simulation software.The hot extrusion characteristics of superalloy 617B were systematically analyzed by the simulation.As a result, the evolution of temperature, grain size, and loading could be predicted quantitatively.At the same time, to optimize the hot extrusion parameters, microstructure-based hot extrusion control principles, including temperature principle, loading principle, precise microstructure control principle, were proposed considering practical hot extrusion process.Moreover, the control mechanism and application process of these principles were elaborated in detail in this paper.The hot extrusion parameters of superalloy 617B tube were optimized based on the proposed microstructure-based hot extrusion control principles.Under the guidance of the microstructure-based hot extrusion control principles, superalloy 617B tube with uniform axial dimension and good surface quality was extruded successfully in the factory.The practical extrusion result agrees well with the simulated one.Therefore, the establishment and validation of the simulation method and microstructure-based hot extrusion control principles can provide theoretical guidance for the hot extrusion process optimization of nickel-base superalloy tube in practical applications.

     

  • loading
  • [1]
    Viswanathan R, Henry J F, Tanzosh J, et al. US program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform, 2005, 14(3) : 281 doi: 10.1361/10599490524039
    [2]
    Tytko D, Choi P P, Kl?wer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography. Acta Mater, 2012, 60 (4) : 1731 doi: 10.1016/j.actamat.2011.11.020
    [3]
    Jiang H, Dong J X, Zhang M C. Manufacture process design of Inconel 617B superheater tubes for ultra-supercritical power plants. Mater Res Innovations, 2014, 18(Suppl 4) : S4-369 http://forest.ckcest.cn/d/hxwx/AVkJ2x4449MUqoKBN-CZ.html
    [4]
    王寶順. G3合金熱擠壓工藝與潤滑行為及組織控制的關系研究[學位論文]. 北京: 北京科技大學, 2011

    Wang B S.Research on the Correlation of Hot Extrusion Process with Lubrication and Microstructure Control for G3 Alloy [Dissertation].Beijing: University of Science and Technology Beijing, 2011
    [5]
    楊亮. 690合金變形行為及組織與工藝控制研究[學位論文]. 北京: 北京科技大學, 2012

    Yang L. Deformation Characteristics for Alloy 690 with Microstructure and Processing Control [Dissertation].Beijing: University of Science and Technology Beijing, 2012
    [6]
    閆士彩. Inconel625合金高溫高速變形行為及其管材高速熱擠壓工藝優化[學位論文]. 大連: 大連理工大學, 2010

    Yan S C.High-temperature High-speed Hot Deformation Behavior of Inconel625 Alloy and Optimization of High-Speed Extrusion Process for Tube of This Alloy [Dissertation].Dalian: Dalian University of Techonology, 2010
    [7]
    王玨. 鎳基合金管材組織可控的擠出性準則及應用[學位論文]. 北京: 北京科技大學, 2013

    Wang J.Microstructure Controlled Extrudability Criterion of Nickelbase Alloy Tubes [Dissertation].Beijing: University of Scienceand and Technology Beijing, 2013
    [8]
    Jiang H, Dong J X, Zhang M C, et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: a study using processing map. J Alloys Compd, 2015, 647: 338 doi: 10.1016/j.jallcom.2015.05.192
    [9]
    Inconel alloy 617 [J/OL].Special Metals Corporation (2005-03-05) [2019-03-27].http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf
    [10]
    Jiang H, Dong J X, Zhang M C, et al. Phenomenological model for the effect of strain rate on recrystallization and grain growth kinetics in the 617B alloy. J Alloys Compd, 2018, 735: 1520 doi: 10.1016/j.jallcom.2017.11.299
    [11]
    Jiang H, Dong J X, Zhang M C, et al. A study on the effect of strain rate on the dynamic recrystallization mechanism of alloy 617B. Metall Mater Trans A, 2016, 47(10) : 5071 doi: 10.1007/s11661-016-3664-7
    [12]
    王玨, 董建新, 張麥倉, 等. GH4169合金管材正擠壓工藝優化的數值模擬. 北京科技大學學報, 2010, 32(1) : 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201001015.htm

    Wang J, Dong J X, Zhang M C, et al. Numerical simulation for optimization of the extrusion process of GH4169 tubes. J Univ Sci Technol Beijing, 2010, 32(1) : 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201001015.htm
    [13]
    蘇玉華. 高酸性氣田用鎳基耐蝕合金G-3油管的研究[學位論文]. 昆明: 昆明理工大學, 2008

    Sun Y H.Investigation of Nickel Base G-3 Alloy Oil Pipe for Severe Sour Gas Field [Dissertation].Kunming: Kunming University of Science and Technology, 2008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)

    Article views (1093) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频