Citation: | LIN Li, LI Bao-shun, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong. High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5[J]. Chinese Journal of Engineering, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007 |
[1] |
馬寧, 胡平, 閆康康, 等. 高強度硼鋼熱成形技術研究及其應用. 機械工程學報, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm
Ma N, Hu P, Yan K K, et al. Research on boron steel for hot forming and its application. J Mech Eng, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm
|
[2] |
Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels. J Mater Process Technol, 2006, 177(1-3): 452 doi: 10.1016/j.jmatprotec.2006.03.233
|
[3] |
Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Mater Sci Eng A, 2008, 478(1-2): 130 doi: 10.1016/j.msea.2007.05.094
|
[4] |
馬寧, 胡平, 武文華, 等. 高強度鋼板熱成形本構理論與實驗分析. 力學學報, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm
Ma N, Hu P, Wu W H, et al. Constitutive theory and experiment analysis of hot forming for high strength steel. Chin J Theor Appl Mech, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm
|
[5] |
Murty S V S N, Sarkar A, Narayanan P R, et al. Development of processing maps and constitutive relationship for thermomechanical processing of aluminum alloy AA2219. J Mater Eng Perform, 2017, 26(5): 2190 doi: 10.1007/s11665-017-2669-8
|
[6] |
Chu Y D, Li J S, Zhao F T, et al. Flow behavior and constitutive relationship for elevated temperature compressive deformation of a high Nb containing TiAl alloy with (α2+γ) microstructure. Mater Lett, 2018, 210: 58 doi: 10.1016/j.matlet.2017.08.131
|
[7] |
Shi B D, Peng Y, Yang C, et al. Loading path dependent distortional hardening of Mg alloys: experimental investigation and constitutive modeling. Int J Plast, 2017, 90: 76 doi: 10.1016/j.ijplas.2016.12.006
|
[8] |
Li H P, He L F, Zhao G Q, et al. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model. Mater Sci Eng A, 2013, 580: 330 doi: 10.1016/j.msea.2013.05.023
|
[9] |
Taylor T, Fourlaris G, Evans P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies. Mater Sci Technol, 2014, 30(7): 818 doi: 10.1179/1743284713Y.0000000409
|
[10] |
Taylor T, Danks S, Fourlaris G. Dynamic tensile testing of ultrahigh strength hot stamped martensitic steels. Steel Res Int, 2017, 88(3): 1600144 doi: 10.1002/srin.201600144
|
[11] |
Gladman T. Grain refinement in multiple microalloyed steels. HSLA Steels. Warrendale, 1992: 3
|
[12] |
張施琦, 馮定, 張躍, 等. 新型超高強度熱沖壓用鋼的熱變形行為及本構關系. 材料工程, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004
Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel. J Mater Eng, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004
|
[13] |
齊敏杰, 張學賓, 宋克興, 等. 35MnB鋼高溫變形行為及本構方程. 塑性工程學報, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm
Qi M J, Zhang X B, Song K X, et al. Deformation behavior and constitutive equation of 35MnB steel at high temperature. J Plast Eng, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm
|
[14] |
李國城, 鄧濤, 盧任之. 超高強度鋼板熱流變行為試驗研究及本構模型仿真分析. 鍛壓技術, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm
Li G C, Deng T, Lu R Z. Experimental research on hot deformation behavior of ultra strength steel and simulation analysis of the constitutive relationship. Forg Stamp Technol, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm
|
[15] |
Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344
|
[16] |
Zhao Y H, Sun J, Li J F, et al. A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J Alloys Compd, 2017, 723: 179 doi: 10.1016/j.jallcom.2017.06.251
|
[17] |
Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci, 2010, 49(3): 628 doi: 10.1016/j.commatsci.2010.06.004
|
[18] |
Li Z Z, Wang B F, Zhao S T, et al. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater, 2017, 125: 210 doi: 10.1016/j.actamat.2016.11.041
|
[19] |
He S, Li C S, Huang Z Y, et al. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe-36% Ni Invar alloy. J Mater Res, 2017, 32(20): 3831 doi: 10.1557/jmr.2017.259
|
[20] |
Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict high-temperature flow behavior of Ti-6Al-4V alloy in α+β phase. High Temp Mater Processes, 2016, 35(3): 297 doi: 10.1515/htmp-2014-0157
|
[21] |
王巧玲, 唐炳濤, 鄭偉. 一種修正的Norton-Hoff本構模型及實驗驗證. 中國機械工程, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023
Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification. China Mech Eng, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023
|