<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
LIN Li, LI Bao-shun, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong. High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5[J]. Chinese Journal of Engineering, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007
Citation: LIN Li, LI Bao-shun, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong. High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5[J]. Chinese Journal of Engineering, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007

High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5

doi: 10.13374/j.issn2095-9389.2019.04.007
More Information
  • Corresponding author: ZHU Guo-ming, E-mail:zhuguoming@ustb.edu.cn
  • Received Date: 2018-04-13
  • Publish Date: 2019-04-15
  • With the rapid development of global economy, problems in energy production and environmental protection are becoming severe, and the automotive industry is under increasing pressure to reduce the weight of vehicles and improve crash performance. Due to the demand for reduced vehicle weight as well as improved safety and crashworthiness, hot-stamped components from ultra-high strength steels have been utilized for automobile manufacturing. Currently, the most widely used hot-stamped steel plate is 22MnB5. Its tensile strength is 1500 MPa and yield strength is 1200 MPa. In contrast, as the demands for steel strength have increased, the demand for high strength grades of steel has been quickly put on the production agenda. In recent years, a novel hot-stamped steel, 38MnB5 has been developed, with a tensile strength exceeding 2000 MPa. The high temperature deformation behavior of 38MnB5 steel was investigated by the Gleeble-3500 thermal-mechanical simulator. The isothermal uniaxial tensile tests of the steel were performed within deformation temperature range of 650-950℃ under strain rates of 0. 01, 0. 1, 1, and 10 s-1, and the typical true stress-strain curves of 38MnB5 at relative conditions were analyzed. The experimental results show that the flow stress rises with decreasing deformation temperature under the same strain rate, and with an increasing strain rate. When the strain rate gradually increased, dynamic recovery and dynamical recrystallization exhibited an apparent effect on the hot deformation process, while the inconspicuous impact receded with rising temperature. In consideration of the multiple influences on deformation temperature, strain rate and strain, a phenomenological, constitutive relationship was developed to depict the hot deformation process of 38MnB5. In the established equation, the material constants dependent on the deformation temperature, strain rate, and strain were obtained using regression analysis of the experimental data for flow stress, strain, strain rate, etc. The comparison between the calculated data and the experimental data show that the calculated data derived from the constitutive models are found to be in satisfactory agreement with the experimental results.

     

  • loading
  • [1]
    馬寧, 胡平, 閆康康, 等. 高強度硼鋼熱成形技術研究及其應用. 機械工程學報, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm

    Ma N, Hu P, Yan K K, et al. Research on boron steel for hot forming and its application. J Mech Eng, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm
    [2]
    Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels. J Mater Process Technol, 2006, 177(1-3): 452 doi: 10.1016/j.jmatprotec.2006.03.233
    [3]
    Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Mater Sci Eng A, 2008, 478(1-2): 130 doi: 10.1016/j.msea.2007.05.094
    [4]
    馬寧, 胡平, 武文華, 等. 高強度鋼板熱成形本構理論與實驗分析. 力學學報, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm

    Ma N, Hu P, Wu W H, et al. Constitutive theory and experiment analysis of hot forming for high strength steel. Chin J Theor Appl Mech, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm
    [5]
    Murty S V S N, Sarkar A, Narayanan P R, et al. Development of processing maps and constitutive relationship for thermomechanical processing of aluminum alloy AA2219. J Mater Eng Perform, 2017, 26(5): 2190 doi: 10.1007/s11665-017-2669-8
    [6]
    Chu Y D, Li J S, Zhao F T, et al. Flow behavior and constitutive relationship for elevated temperature compressive deformation of a high Nb containing TiAl alloy with (α2+γ) microstructure. Mater Lett, 2018, 210: 58 doi: 10.1016/j.matlet.2017.08.131
    [7]
    Shi B D, Peng Y, Yang C, et al. Loading path dependent distortional hardening of Mg alloys: experimental investigation and constitutive modeling. Int J Plast, 2017, 90: 76 doi: 10.1016/j.ijplas.2016.12.006
    [8]
    Li H P, He L F, Zhao G Q, et al. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model. Mater Sci Eng A, 2013, 580: 330 doi: 10.1016/j.msea.2013.05.023
    [9]
    Taylor T, Fourlaris G, Evans P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies. Mater Sci Technol, 2014, 30(7): 818 doi: 10.1179/1743284713Y.0000000409
    [10]
    Taylor T, Danks S, Fourlaris G. Dynamic tensile testing of ultrahigh strength hot stamped martensitic steels. Steel Res Int, 2017, 88(3): 1600144 doi: 10.1002/srin.201600144
    [11]
    Gladman T. Grain refinement in multiple microalloyed steels. HSLA Steels. Warrendale, 1992: 3
    [12]
    張施琦, 馮定, 張躍, 等. 新型超高強度熱沖壓用鋼的熱變形行為及本構關系. 材料工程, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004

    Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel. J Mater Eng, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004
    [13]
    齊敏杰, 張學賓, 宋克興, 等. 35MnB鋼高溫變形行為及本構方程. 塑性工程學報, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm

    Qi M J, Zhang X B, Song K X, et al. Deformation behavior and constitutive equation of 35MnB steel at high temperature. J Plast Eng, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm
    [14]
    李國城, 鄧濤, 盧任之. 超高強度鋼板熱流變行為試驗研究及本構模型仿真分析. 鍛壓技術, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm

    Li G C, Deng T, Lu R Z. Experimental research on hot deformation behavior of ultra strength steel and simulation analysis of the constitutive relationship. Forg Stamp Technol, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm
    [15]
    Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344
    [16]
    Zhao Y H, Sun J, Li J F, et al. A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J Alloys Compd, 2017, 723: 179 doi: 10.1016/j.jallcom.2017.06.251
    [17]
    Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci, 2010, 49(3): 628 doi: 10.1016/j.commatsci.2010.06.004
    [18]
    Li Z Z, Wang B F, Zhao S T, et al. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater, 2017, 125: 210 doi: 10.1016/j.actamat.2016.11.041
    [19]
    He S, Li C S, Huang Z Y, et al. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe-36% Ni Invar alloy. J Mater Res, 2017, 32(20): 3831 doi: 10.1557/jmr.2017.259
    [20]
    Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict high-temperature flow behavior of Ti-6Al-4V alloy in α+β phase. High Temp Mater Processes, 2016, 35(3): 297 doi: 10.1515/htmp-2014-0157
    [21]
    王巧玲, 唐炳濤, 鄭偉. 一種修正的Norton-Hoff本構模型及實驗驗證. 中國機械工程, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023

    Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification. China Mech Eng, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (1218) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频