<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
LI Jiang-yun, ZHAO Yi-kai, XUE Zhuo-er, CAI Zheng, LI Qing. A survey of model compression for deep neural networks[J]. Chinese Journal of Engineering, 2019, 41(10): 1229-1239. doi: 10.13374/j.issn2095-9389.2019.03.27.002
Citation: LI Jiang-yun, ZHAO Yi-kai, XUE Zhuo-er, CAI Zheng, LI Qing. A survey of model compression for deep neural networks[J]. Chinese Journal of Engineering, 2019, 41(10): 1229-1239. doi: 10.13374/j.issn2095-9389.2019.03.27.002

A survey of model compression for deep neural networks

doi: 10.13374/j.issn2095-9389.2019.03.27.002
More Information
  • Corresponding author: LI Qing, E-mail: Liqing@ies.ustb.edu.cn
  • Received Date: 2019-03-27
  • Publish Date: 2019-10-01
  • In recent years, deep neural networks (DNN) have attracted increasing attention because of their excellent performance in computer vision and natural language processing. The success of deep learning is due to the fact that the models have more layers and more parameters, which gives them stronger nonlinear fitting ability. Furthermore, the continuous updating of hardware equipment makes it possible to quickly train deep learning models. The development of deep learning is driven by the greater amounts of available annotated or unannotated data. Specifically, large-scale data provide models with greater learning space and stronger generalization ability. Although the performance of deep neural networks is significant, they are difficult to deploy in embedded or mobile devices with limited hardware due to their large number of parameters and high storage and computing costs. Recent studies have found that deep models based on a convolutional neural network are characterized by parameter redundancy as well as parameters that are irrelevant to the final model results, which provides theoretical support for the compression of deep network models. Therefore, determining ways to reduce model size while retaining model precision has become a hot research issue. Model compression refers to the reduction of a trained model through some operation to obtain a lightweight network with equivalent performance. After model compression, there are fewer network parameters and usually a reduction in the computation required, which greatly reduces the computational and storage costs and enables the deployment of the model in restricted hardware conditions. In this paper, the achievements and progress made in recent years by domestic and foreign scholars with respect to model compressionwere classified and summarized and their advantages and disadvantages were evaluated, including network pruning, parameter sharing, quantization, network decomposition, and network distillation. Then, existing problems and the future development of model compression were discussed.

     

  • loading
  • [1]
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
    [2]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks//Advances in Neural Information Processing Systems. Lake Tahoe, 2012: 1097
    [3]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. ArXiv Preprint (2015-04-10)[2019-03-22]. https://arxiv.org/abs/1409.1556
    [4]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 1
    [5]
    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, 2016: 770
    [6]
    Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, 2017: 4700
    [7]
    Le Q V, Ngiam J, Coates A, et al. On optimization methods for deep learning//Proceedings of the 28th International Conference on International Conference on Machine Learning. Omnipress, 2011: 265
    [8]
    韓云飛, 蔣同海, 馬玉鵬, 等. 深度神經網絡的壓縮研究. 計算機應用研究, 2018, 35(10): 2894 doi: 10.3969/j.issn.1001-3695.2018.10.003

    Han Y F, Jiang T H, Ma Y P, et al. Compression of deep neural networks. Comput Appl Res, 2018, 35(10): 2894 doi: 10.3969/j.issn.1001-3695.2018.10.003
    [9]
    Setiono R, Liu H. Neural-network feature selector. IEEE Trans Neural Networks, 1997, 8(3): 654 doi: 10.1109/72.572104
    [10]
    LeCun Y, Denker J S, Solla S A, et al. Optimal brain damage//Advances in Neural Information Processing Systems. Denver, 1989: 598
    [11]
    Hassibi B, Stork D G, Wolff G J. Optimal brain surgeon and general network pruning//IEEE International Conference on Neural Networks. San Francisco, 1993: 293
    [12]
    Hassibi B, Stork D G. Second order derivatives for network pruning: optimal brain surgeon//Advances in Neural Information Processing Systems. Denver, 1993: 164
    [13]
    Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network// Advances in Neural Information Processing Systems. Montreal, 2015: 1135
    [14]
    Han S, Mao H, Dally W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[J/OL]. ArXiv Preprint (2016-02-15)[2019-03-22]. https://arxiv.org/abs/1510.00149
    [15]
    Srinivas S, Subramanya A, Venkatesh Babu R. Training sparse neural networks//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii, 2017: 138
    [16]
    Anwar S, Hwang K, Sung W. Structured pruning of deep convolutional neural networks. ACM J Emerg Technol Comput Syst, 2017, 13(3): 32 doi: 10.1145/3005348
    [17]
    Wen W, Wu C P, Wang Y D, et al. Learning structured sparsity in deep neural networks//Advances in Neural Information Processing Systems. Barcelona, 2016: 2074
    [18]
    Lin S H, Ji R R, Li Y C, et al. Toward compact ConvNets via structure-sparsity regularized filter pruning. IEEE Trans Neural Networks Learn Syst, 2019: 1. http://www.ncbi.nlm.nih.gov/pubmed/30990448
    [19]
    Guo Y W, Yao A B, Chen Y R. Dynamic network surgery for efficient DNNs//Advances in Neural Information Processing Systems. Barcelona, 2016: 1379
    [20]
    Jia H P, Xiang X S, Fan D, et al. DropPruning for model compression[J/OL]. ArXiv Preprint (2018-12-05)[2019-03-22]. https://arxiv.org/abs/1812.02035
    [21]
    Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets[J/OL]. ArXiv Preprint (2017-03-10)[2019-03-22]. https://arxiv.org/abs/1608.08710
    [22]
    Hu H Y, Peng R, Tai Y W, et al. Network trimming: a data-driven neuron pruning approach towards efficient deep architectures[J/OL]. arXiv preprint (2016-07-12)[2019-03-22]. https://arxiv.org/abs/1607.03250
    [23]
    Tian Q, Arbel T, Clark J J. Deep LDA-pruned nets for efficient facial gender classification//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii, 2017: 10
    [24]
    Luo J H, Wu J X, Lin W Y. ThiNet: a filter level pruning method for deep neural network compression//Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 5058
    [25]
    He Y, Kang G L, Dong X Y, et al. Soft filter pruning for accelerating deep convolutional neural networks[J/OL]. ArXiv Preprint (2018-08-21)[2019-03-22]. https://arxiv.org/abs/1808.06866
    [26]
    He Y H, Zhang X Y, Sun J. Channel pruning for accelerating very deep neural networks[J/OL]. ArXiv Preprint (2017-08-21)[2019-03-22]. https://arxiv.org/abs/1707.06168
    [27]
    Hu Y M, Sun S Y, Li J Q, et al. Multi-loss-aware channel pruning of deep networks[J/OL]. ArXiv Preprint (2019-02-27)[2019-03-22]. https://arxiv.org/abs/1902.10364
    [28]
    Zhuang Z W, Tan M K, Zhuang B H, et al. Discrimination-aware channel pruning for deep neural networks[J/OL]. ArXiv Preprint (2019-01-14)[2019-03-22]. https://arxiv.org/abs/1810.11809
    [29]
    He Y H, Han S. ADC: automated deep compression and acceleration with reinforcement learning[J/OL]. ArXiv Preprint (2019-01-16)[2019-03-22]. https://arxiv.org/abs/1802.03494v1
    [30]
    Appuswamy R, Nayak T, Arthur J, et al. Structured convolution matrices for energy-efficient deep learning[J/OL]. ArXiv Preprint (2016-06-08)[2019-03-22]. https://arxiv.org/abs/1606.02407
    [31]
    Sindhwani V, Sainath T N, Kumar S. Structured transforms for small-footprint deep learning[J/OL]. ArXiv Preprint (2015-10-06)[2019-03-22]. https://arxiv.org/abs/1510.01722
    [32]
    Cheng Y, Yu F X, Feris R S, et al. An exploration of parameter redundancy in deep networks with circulant projections[J/OL]. ArXiv Preprint (2015-10-27)[2019-03-22]. https://arxiv.org/abs/1502.03436
    [33]
    Chen W L, Wilson J T, Tyree S, et al. Compressing neural networks with the hashing trick//Proceedings of the 32nd International Conference on Machine Learning. Lille, 2015: 2285
    [34]
    Shi L, Feng S K, Zhu Z F. Functional hashing for compressing neural networks[J/OL]. ArXiv Preprint (2016-05-20)[2019-03-22]. https://arxiv.org/abs/1605.06560
    [35]
    Wu J R, Wang Y, Wu Z Y, et al. Deep k-Means: Re-training and parameter sharing with harder cluster assignments for compressing deep convolutions[J/OL]. ArXiv Preprint (2018-06-24)[2019-03-22]. https://arxiv.org/abs/1806.09228
    [36]
    Lu Z Y, Sindhwani V, Sainath T N. Learning compact recurrent neural networks[J/OL]. ArXiv Preprint (2016-04-09)[2019-03-22]. https://arxiv.org/abs/1604.02594
    [37]
    Jin X J, Yang Y Z, Xu N, et al. WSNet: compact and efficient networks through weight sampling[J/OL]. ArXiv Preprint (2018-05-22)[2019-03-22]. https://arxiv.org/abs/1711.10067
    [38]
    Yang Y Z, Jojic N, Huan J. FSNet: Compression of deep convolutional neural networks by filter summary[J/OL]. ArXiv Preprint (2019-02-13)[2019-03-22]. https://arxiv.org/abs/1902.03264
    [39]
    Gupta S, Agrawal A, Gopalakrishnan K, et al. Deep learning with limited numerical precision[J/OL]. ArXiv Preprint (2015-02-09)[2019-03-22]. https://arxiv.org/abs/1502.02551
    [40]
    Jacob B, Kligys S, Chen B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 2704
    [41]
    Courbariaux M, Bengio Y, David J P. BinaryConnect: training deep neural networks with binary weights during propagations//Advances in Neural Information Processing Systems. Canada, 2015: 3123
    [42]
    Courbariaux M, Hubara I, Soudry D, et al. Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1[J/OL]. ArXiv Preprint (2016-03-17)[2019-03-22]. https://arxiv.org/abs/1602.02830
    [43]
    Rastegari M, Ordonez V, Redmon J, et al. XNOR-Net: ImageNet classification using binary convolutional neural networks[J/OL]. ArXiv Preprint (2016-08-02)[2019-03-22]. https://arxiv.org/abs/1603.05279
    [44]
    Li Z F, Ni B B, Zhang W J, et al. Performance guaranteed network acceleration via high-order residual quantization//Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 2584
    [45]
    Hwang K, Sung W. Fixed-point feedforward deep neural network design using weights+1, 0, and -1//2014 IEEE Workshop on Signal Processing Systems (SiPS). Belfast, 2014: 1
    [46]
    Hou L, Yao Q M, Kwok J T. Loss-aware binarization of deep networks[J/OL]. ArXiv Preprint (2018-05-10)[2019-03-22]. https://arxiv.org/abs/1611.01600
    [47]
    Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms//Advances in Neural Information Processing Systems. Canada, 2007
    [48]
    Gudovskiy D A, Rigazio L. ShiftCNN: generalized low-precision architecture for inference of convolutional neural networks[J/OL]. ArXiv Preprint (2017-06-07)[2019-03-22]. https://arxiv.org/abs/1706.02393
    [49]
    Meller E, Finkelstein A, Almog U, et al. Same, same but different-recovering neural network quantization error through weight factorization[J/OL]. ArXiv Preprint (2019-02-05)[2019-03-22]. https://arxiv.org/abs/1902.01917
    [50]
    Xu Y H, Zhang S, Qi Y Y, et al. DNQ: Dynamic network quantization[J/OL]. ArXiv Preprint (2018-12-06)[2019-03-22]. https://arxiv.org/abs/1812.02375
    [51]
    Golub G H, Reinsch C. Singular value decomposition and least squares solutions//Linear Algebra. Springer, Berlin, 1971: 134
    [52]
    Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions[J/OL]. ArXiv Preprint (2014-05-15)[2019-03-22]. https://arxiv.org/abs/1405.3866
    [53]
    Kim Y D, Park E, Yoo S, et al. Compression of deep convolutional neural networks for fast and low power mobile applications[J/OL]. ArXiv Preprint (2016-02-24)[2019-03-22]. https://arxiv.org/abs/1511.06530
    [54]
    Denil M, Shakibi B, Dinh L, et al. Predicting parameters in deep learning//Advances in Neural Information Processing Systems. Lake Tahoe, 2013: 2148
    [55]
    Calvi G G, Moniri A, Mahfouz M, et al. Tucker tensor layer in fully connected neural networks[J/OL]. ArXiv Preprint (2019-03-14)[2019-03-22]. https://arxiv.org/abs/1903.06133
    [56]
    Bucilu? C, Caruana R, Niculescu-Mizil A. Model compression//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, 2006: 535
    [57]
    Ba J, Caruana R. Do deep nets really need to be deep?//Advances in Neural Information Processing Systems. Canada, 2014: 2654
    [58]
    Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J/OL]. ArXiv Preprint (2015-03-09)[2019-03-22]. https://arxiv.org/abs/1503.02531
    [59]
    Romero A, Ballas N, Kahou S E, et al. FitNets: hints for thin deep nets[J/PL]. ArXiv Preprint (2015-03-27)[2019-03-22]. https://arxiv.org/abs/1412.6550
    [60]
    Chen T Q, Goodfellow I, Shlens J. Net2Net: accelerating learning via knowledge transfer[J/OL]. ArXiv Preprint (2016-04-23)[2019-03-22]. https://arxiv.org/abs/1511.05641
    [61]
    Li Z Z, Hoiem D. Learning without forgetting. IEEE Trans Pattern Anal Mach Intell, 2018, 40(12): 2935 doi: 10.1109/TPAMI.2017.2773081
    [62]
    Zagoruyko S, Komodakis N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[J/OL]. ArXiv Preprint (2017-02-12)[2019-03-22]. https://arxiv.org/abs/1612.03928
    [63]
    Mirzadeh S I, Farajtabar M, Li A, et al. Improved knowledge distillation via teacher assistant: bridging the gap between student and teacher[J/OL]. ArXiv Preprint (2019-02-09)[2019-03-22]. https://arxiv.org/abs/1902.03393
    [64]
    Liu X, Wang X G, Matwin S. Improving the interpretability of deep neural networks with knowledge distillation[J/OL]. ArXiv Preprint (2018-12-28)[2019-03-22]. https://arxiv.org/abs/1812.10924
    [65]
    Yang C L, Xie L X, Su C, et al. Snapshot distillation: Teacher-student optimization in one generation[J/OL]. ArXiv Preprint (2018-12-01)[2019-03-22]. https://arxiv.org/abs/1812.00123
    [66]
    Wang J, Bao W D, Sun L C, et al. Private model compression via knowledge distillation[J/OL]. ArXiv Preprint (2018-11-13)[2019-03-22]. https://arxiv.org/abs/1811.05072
    [67]
    Lee S H, Kim D H, Song B C. Self-supervised knowledge distillation using singular value decomposition[J/OL]. ArXiv Preprint (2018-07-18)[2019-03-22]. https://arxiv.org/abs/1807.06819
    [68]
    Lan X, Zhu X T, Gong S G. Knowledge distillation by on-the-fly native ensemble[J/OL]. ArXiv Preprint (2018-09-08)[2019-03-22]. https://arxiv.org/abs/1806.04606
    [69]
    Liu Y J, Che W X, Zhao H P, et al. Distilling knowledge for search-based structured prediction[J/OL]. ArXiv Preprint (2018-05-29)[2019-03-22]. https://arxiv.org/abs/1805.11224
    [70]
    Li Q Q, Jin S Y, Yan J J. Mimicking very efficient network for object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 6356
    [71]
    Chen G B, Choi W, Yu X, et al. Learning efficient object detection models with knowledge distillation//Advances in Neural Information Processing Systems. Long Beach, 2017: 742
    [72]
    Wang T, Yuan L, Zhang X P, et al. Distilling object detectors with fine-grained feature imitation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 4933
    [73]
    Liu Y F, Chen K, Liu C, et al. Structured knowledge distillation for semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 2604
    [74]
    He T, Shen C H, Tian Z, et al. Knowledge adaptation for efficient semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 578
    [75]
    Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[J/OL]. ArXiv Preprint (2016-11-04)[2019-03-22]. https://arxiv.org/abs/1602.07360
    [76]
    Haward A G, Zhu M L, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J/OL]. ArXiv Preprint (2017-04-17)[2019-03-22]. https://arxiv.org/abs/1704.04861
    [77]
    Sandler M, Haward A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4510
    [78]
    Haward A, Sandler M, Chu G, et al. Searching for MobileNetV3[J/OL]. ArXiv Preprint (2019-08-24)[2019-10-10]. https://arxiv.org/abs/1905.02244
    [79]
    Hu J, Shen L, Sun G. Squeeze-and-excitation networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
    [80]
    Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848
    [81]
    Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design// Proceedings of the European Conference on Computer Vision. Munich, 2018: 116
    [82]
    Chollet F. Xception: Deep learning with depthwise separable convolutions//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1251
    [83]
    Xie S N, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1492
    [84]
    Gao H Y, Wang Z Y, Ji S W. ChannelNets: Compact and efficient convolutional neural networks via channel-wise convolutions//Advances in Neural Information Processing Systems. Salt Lake City, 2018: 5197
    [85]
    Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[J/OL]. ArXiv Preprint (2016-08-23)[2019-03-22]. https://arxiv.org/abs/1602.07261
    [86]
    Tan M X, Chen B, Pang R M, et al. MnasNet: Platform-aware architecture search for mobile//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 2820
    [87]
    Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[J/OL]. ArXiv Preprint (2019-06-10)[2019-10-10]. https://arxiv.org/abs/1905.11946
    [88]
    Liu C X, Chen L C, Schroff F, et al. Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 82
    [89]
    Huang G, Chen D L, Li T H, et al. Multi-scale dense networks for resource efficient image classification[J/OL]. ArXiv Preprint (2018-06-07)[2019-03-22]. https://arxiv.org/abs/1703.09844
    [90]
    Shelhamer E, Rakelly K, Hoffman J, et al. Clockwork convnets for video semantic segmentation[J/OL]. ArXiv Preprint (2016-08-11)[2019-03-22]. https://arxiv.org/abs/1608.03609
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)

    Article views (2745) PDF downloads(642) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频