<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
ZHU Yan, WANG Qiao-shi, QIN Bo-han, WANG Zhong-hao. Survey of blockchain technology and its advances[J]. Chinese Journal of Engineering, 2019, 41(11): 1361-1373. doi: 10.13374/j.issn2095-9389.2019.03.26.004
Citation: ZHU Yan, WANG Qiao-shi, QIN Bo-han, WANG Zhong-hao. Survey of blockchain technology and its advances[J]. Chinese Journal of Engineering, 2019, 41(11): 1361-1373. doi: 10.13374/j.issn2095-9389.2019.03.26.004

Survey of blockchain technology and its advances

doi: 10.13374/j.issn2095-9389.2019.03.26.004
More Information
  • Corresponding author: E-mail: zhuyan@ustb.edu.cn
  • Received Date: 2019-03-26
  • Publish Date: 2019-11-01
  • With the rapid development of e-commerce and network finance involving the Internet, hundreds of millions of online transactions are being carried out on the Internet every moment. Guaranteeing the security of these transactions and realizing the secure storage, exchange, and sharing of massive transaction data have become paramount. Blockchain is a practical technology recently proposed to solve the above problems. Through P2P network technology, distributed ledger technology, asymmetric cryptography, consensus mechanism, and smart contract technology, blockchains can ensure data integrity, nonrepudiation, privacy, consistency, and other security protections. Hence, it has attracted wide attention from academia and industry in recent years. Starting from the design and demand of blockchains, this paper first expounds the basic concepts, features, and typical architecture in the current blockchains. Taking Bitcoin as an example, this paper also explored the various proposed structures and the corresponding mechanisms, including block storage structure and tamper-proof mechanism, transaction structure and scripting language, trader identification mechanism, and efficient network transaction propagation mechanism. Moreover, several current mainstream blockchain consensus algorithms were described according to the categories of proof-mode, Byzantine-type, traditional consensus, and hybrid consensus. In addition, the latest developments in smart contracts were discussed from some aspects, including concepts, organizational structure, the relationship among modules, as well as execution approaches and processes. Finally, the main security challenges faced by blockchains were summarized in order to systematically grasp the developments and trends of blockchain technology.

     

  • loading
  • [1]
    Nakamoto S. Bitcoin: a peer-to-peer electronic cash system[J/OL]. Bitcoin (2018−06−10)[2019−03−01]. https: //bitcoin.org/bitcoin.pdf
    [2]
    Decker C, Wattenhofer R. Information propagation in the bitcoin network//IEEE P2P 2013 Proceedings. Trento, 2013: 1
    [3]
    Crosby M, Nachiappan P P, Verma S, et al. Blockchain technology: Beyond bitcoin. Appl Innovation Rev, 2016(2): 6
    [4]
    Xu X W, Pautasso C, Zhu L M, et al. The blockchain as a software connector//2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). Venice, 2016: 182
    [5]
    Pilkington M. Blockchain Technology: Principles and Applications. Northampton: Edward Elgar Publishing, 2016
    [6]
    An R, He D B, Zhang Y R, et al. The design of an anti-counterfeiting system based on blockchain. J Cryptologic Res, 2017, 4(2): 199
    [7]
    Tian H B, He J J, Fu L Q, et al. A privacy preserving fair contract signing protocol based on block chains. J Cryptologic Res, 2017, 4(2): 187
    [8]
    Mettler M. Blockchain technology in healthcare: The revolution starts here//2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). Munich, 2016: 1
    [9]
    王元地, 李粒, 胡諜. 區塊鏈研究綜述. 中國礦業大學學報:社會科學版, 2018(3):74

    Wang Y D, Li L, Hu D. A literature review of block chain. J China Univ Min Technol Social Sci, 2018(3): 74
    [10]
    Lin I C, Liao T C. A survey of blockchain security issues and challenges. Int J Network Security, 2017, 19(5): 653
    [11]
    Zheng Z B, Xie S A, Dai H N, et al. Blockchain challenges and opportunities: a survey. Int J Web Grid Services, 2018, 14(4): 352 doi: 10.1504/IJWGS.2018.095647
    [12]
    Randall D, Goel P, Abujamra R. Blockchain applications and use cases in health information technology. J Health Med Informat, 2017, 8(276): 2
    [13]
    袁勇, 王飛躍. 區塊鏈技術發展現狀與展望. 自動化學報, 2016, 42(4):481

    Yuan Y, Wang F Y. Blockchain: The state of the art and future trends. Acta Autom Sinica, 2016, 42(4): 481
    [14]
    Goldwasser S, Micali S. Probabilistic encryption. J Comput Syst Sci, 1984, 28(2): 270 doi: 10.1016/0022-0000(84)90070-9
    [15]
    Evans D S. Economic aspects of bitcoin and other decentralized public-ledger currency platforms[J/OL]. SSRN (2014−04−15)[2019−03−01]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2424516
    [16]
    Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol: Analysis and applications//Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, 2015: 281
    [17]
    Barbosa M, Farshim P. On the semantic security of functional encryption schemes//International Workshop on Public Key Cryptography. Berlin, 2013: 143
    [18]
    Lamport L. The part-time parliament. ACM Trans Comput Syst, 1998, 16(2): 133 doi: 10.1145/279227.279229
    [19]
    Szydlo M. Merkle tree traversal in log space and time//International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, 2004: 541
    [20]
    Jakobsson M, Leighton T, Micali S, et al. Fractal Merkle tree representation and traversal//CryptographersTrack at the RSA Conference. Berlin, 2003: 314
    [21]
    沈鑫, 裴慶祺, 劉雪峰. 區塊鏈技術綜述. 網絡與信息安全學報, 2016, 2(11):00107-1

    Shen X, Pei Q Q, Liu X F. Survey of block chain. Chin J Network Inf Security, 2016, 2(11): 00107-1
    [22]
    Adamic L A. The small world web//International Conference on Theory and Practice of Digital Libraries. Berlin, 1999: 443
    [23]
    Zheng Z B, Xie S A, Dai H N, et al. An overview of blockchain technology: Architecture, consensus, and future trends//2017 IEEE International Congress on Big Data (BigData Congress). Honolulu, 2017: 557
    [24]
    Baliga A. Understanding blockchain consensus models[J/OL]. Persistent Systems (2017−04)[2019−03−01]. https://pdfs.semanticscholar.org/da8a/37b10bc1521a4d3de925d7ebc44bb606d740.pdf?_ga=2.21200635.1919538867.1522092864-1798624458.1520283070&source=post_page
    [25]
    Bach L M, Mihaljevic B, Zagar M. Comparative analysis of blockchain consensus algorithms//2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, 2018: 1545
    [26]
    Jakobsson M, Juels A. Proofs of work and bread pudding protocols//Secure Information Networks. Boston: Springer, 1999: 258
    [27]
    Kiayias A, Russell A, David B, et al. Ouroboros: A provably secure proof-of-stake blockchain protocol//Annual International Cryptology Conference. Santa Barbara: Springer, 2017: 357
    [28]
    Castro M, Liskov B. Practical byzantine fault tolerance//Proceedings of the 3rd Symposium on Operating Systems Design and Implementation. New Orleans, 1999: 173
    [29]
    Gilad Y, Hemo R, Micali S, et al. Algorand: Scaling byzantine agreements for cryptocurrencies//Proceedings of the 26th Symposium on Operating Systems Principles. Shanghai, 2017: 51
    [30]
    Ongaro D, Ousterhout J. In search of an understandable consensus algorithm//2014 Annual Technical Conference ({USENIX}{ATC} 14).San Diego, 2014: 305
    [31]
    Lowe G. Casper: a compiler for the analysis of security protocols. J Comput Security, 1998, 6(1-2): 53 doi: 10.3233/JCS-1998-61-204
    [32]
    Copeland C, Zhong H X. Tangaroa: a byzantine fault tolerantraft[J/OL]. Stanford University Press (2018−04−10)[2019−03−01]. http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
    [33]
    Gervais A, Karame G O, Wüst K, et al. On the security and performance of proof of work blockchains//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna, 2016: 3
    [34]
    King S, Nadal S. PPCoin: peer-to-peer crypto-currency with proof-of-stake[J/OL]. Bitcoin (2012−08−19)[2019−03−01]. https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
    [35]
    Cachin C. Architecture of the hyperledger blockchain fabric//Workshop on Distributed Cryptocurrencies and Consensus Ledgers. Switzerland, 2016
    [36]
    Du M X, Ma X F, Zhang Z, et al. A review on consensus algorithm of blockchain//2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, 2017: 2567
    [37]
    Micali S, Rabin M, Vadhan S. Verifiable random functions//40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039). New York, 1999: 120
    [38]
    Linnhoff-Popien C, Schneider R, Zaddach M. Digital Marketplaces Unleashed. Berlin: Springer, 2018
    [39]
    [40]
    He X, Qin B H, Zhu Y, et al. SPESC: a specification language for smart contracts//2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). Tokyo, 2018: 132
    [41]
    Ethereum. Solidity by Example[DB/OL]. Ethereum Revision (2016)[2019−03−02]. https://solidity.readthedocs.io/en/latest/solidity-by-example.html#blind-auction
    [42]
    Kosba A, Miller A, Shi E, et al. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts//2016 IEEE Symposium on Security and Privacy (SP). San Jose, 2016: 839
    [43]
    Miers I, Garman C, Green M, et al. Zerocoin: Anonymous distributed e-cash from bitcoin//2013 IEEE Symposium on Security and Privacy. Berkeley, 2013: 397
    [44]
    Sasson E B, Chiesa A, Garman C, et al. Zerocash: Decentralized anonymous payments from bitcoin//2014 IEEE Symposium on Security and Privacy. San Jose, 2014: 459
    [45]
    Andrychowicz M, Dziembowski S, Malinowski D, et al. Secure multiparty computations on bitcoin//2014 IEEE Symposium on Security and Privacy. San Jose, 2014: 443
    [46]
    Andrychowicz M, Dziembowski S, Malinowski D, et al. Fair two-party computations via bitcoin deposits//International Conference on Financial Cryptography and Data Security. Berlin, 2014: 105
    [47]
    朱巖, 宋曉旭, 薛顯斌, 等. 基于安全多方計算的區塊鏈智能合約執行系統. 密碼學報, 2018, 6(2):246

    Zhu Y, Song X X, Xue X B, et al. Smart contract execution system over blockchain based on secure multi-party computation. J Cryptologic Res, 2018, 6(2): 246
    [48]
    Wang H, Song X F, Ke J M, et al. Blockchain and privacy preserving mechanisms in cryptocurrency. Netinfo Security, 2017, 7: 32
    [49]
    Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, 2016: 254
    [50]
    Eyal I, Gencer A E, Sirer E G, et al. Bitcoin-NG: a scalable blockchain protocol//13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). Santa Clara, 2016: 45
    [51]
    Sompolinsky Y, Zohar A. PHANTOM: a scalable blockDAG protocol. IACR Cryptology ePrint Archive, 2018, 2018: 104
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (3460) PDF downloads(259) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频