Citation: | GAO Shuai, WANG Min, GUO Jian-long, WANG Hao, ZHI Jian-guo, BAO Yan-ping. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free (IF) steel slabs[J]. Chinese Journal of Engineering, 2020, 42(2): 194-202. doi: 10.13374/j.issn2095-9389.2019.03.22.004 |
[1] |
Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z
|
[2] |
Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
|
[3] |
Xiao C, Cui H. Effect of Al content on inclusions in the automobile high strength steel. Chin J Eng, 2018, 40(增刊1): 29
肖超, 崔衡. Al含量對汽車用高強鋼中夾雜物的影響. 工程科學學報, 2018, 40(增刊1):29)
|
[4] |
趙成林, 唐復平, 朱曉雷, 等. IF鋼連鑄坯表層夾雜分布特征的試驗. 鋼鐵, 2017, 52(12):42
Zhao C L, Tang F P, Zhu X L, et al. Experiment on distribution characteristics of surface inclusions in IF steel continuous casting billet steel making. Iron Steel, 2017, 52(12): 42
|
[5] |
周萌, 姜敏, 苑鵬, 等. 超低碳鋼連鑄坯厚度方向大尺寸夾雜物分布特征. 煉鋼, 2016, 32(2):60
Zhou M, Jiang M, Yuan P, et al. Characterization of large inclusions along the thickness direction in the ultra-low carbon steel slab. Steelmaking, 2016, 32(2): 60
|
[6] |
Wang M, Bao Y P, Cui H, et al. Surface cleanliness evaluation in Ti stabilised ultralow carbon (Ti-IF) steel. Ironmaking Steelmaking, 2011, 38(5): 386 doi: 10.1179/1743281211Y.0000000016
|
[7] |
王敏, 包燕平, 楊荃, 等. IF鋼鑄坯厚度方向潔凈度演變. 工程科學學報, 2015, 37(3):307
Wang M, Bao Y P, Yang Q, et al. Cleanliness evolution of interstitial free (IF) steel slabs in the thickness direction. Chin J Eng, 2015, 37(3): 307
|
[8] |
Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018, 40(增刊1): 177
彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018, 40(增刊1):177)
|
[9] |
Guo J L, Bao Y P, Wang M. Steel slag in China: treatment, recycling, and management. Waste Manage, 2018, 78: 318 doi: 10.1016/j.wasman.2018.04.045
|
[10] |
顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe?Al?Ti?O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
Gu C, Zhao L H, Gan P. Revolution and control of Fe?Al?Ti?O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757
|
[11] |
Bao Y P, Wang M, Jiang W. A method for observing the three-dimensional morphologies of inclusions in steel. Int J Miner Metall Mater, 2012, 19(2): 111 doi: 10.1007/s12613-012-0524-3
|
[12] |
Wang H, Li J, Shi C B, et al. Evolution of Al2O3 inclusions by magnesium treatment in H13 hot work die steel. Ironmaking Steelmaking, 2017, 44(2): 128 doi: 10.1080/03019233.2016.1165498
|
[13] |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Mater Trans B, 1970, 1(7): 1987 doi: 10.1007/BF02642799
|
[14] |
楊亮. 電渣重熔GCr15SiMn軸承鋼TiN夾雜物形成機理及控制工藝[學位論文]. 北京: 北京科技大學, 2017
Yang L. Generation Mechanism and Control Technology of TiN Inclusion for GCr15SiMn in ESR Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[15] |
Chase Jr M W, Curnutt J L, Downey Jr J R, et al. JANAF thermochemical tables, 1982 supplement. J Phys Chem Ref Data, 1982, 11(3): 695 doi: 10.1063/1.555666
|
[16] |
Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
|
[17] |
Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12): 1819 doi: 10.2355/isijinternational.49.1819
|
[18] |
陳家祥. 煉鋼常用圖表數據手冊. 2版. 北京: 冶金工業出版社, 2010
Chen J X. Steelmaking Common Chart Data Sheet. 2nd Ed. Beijing: Metallurgical Industry Press, 2010
|
[19] |
Kraft T, Chang Y A. Predicting microstructure and microsegregation in multicomponent alloys. JOM, 1997, 49(12): 20 doi: 10.1007/s11837-997-0025-4
|
[20] |
郭漢杰. 冶金物理化學教程. 2版. 北京: 冶金工業出版, 2006
Guo H J. Metallurgical Physical Chemistry Course. 2nd Ed. Beijing: Metallurgical Industry Press, 2006
|
[21] |
Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall Trans B, 1986, 17(4): 845 doi: 10.1007/BF02657148
|
[22] |
Ganesan S, Poirier D R. Solute redistribution in dendritic solidification with diffusion in the solid. J Cryst Growth, 1989, 97(3-4): 851 doi: 10.1016/0022-0248(89)90587-3
|
[23] |
Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Trans Iron Steel Inst Jpn, 1986, 26(12): 1045 doi: 10.2355/isijinternational1966.26.1045
|
[24] |
Goto H, Miyazawa K, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steels. ISIJ Int, 1995, 35(6): 708 doi: 10.2355/isijinternational.35.708
|
[25] |
王金永, 劉建華, 劉建飛, 等. Ti-IF鋼凝固過程中TiN的析出機理和規律. 北京科技大學學報, 2014, 36(8):1025
Wang J Y, Liu J H, Liu J F, et al. Precipitation mechanism and behavior of TiN during Ti-IF steel solidification. J Univ Sci Technol Beijing, 2014, 36(8): 1025
|
[26] |
胡漢起. 金屬凝固原理. 北京: 機械工業出版社, 1998
Hu H Q. Principle of Metal Solidification. Beijing: Mechanical Industry Press, 1998
|
[27] |
Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4
|
[28] |
Ma Z T, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int, 1998, 38(1): 46 doi: 10.2355/isijinternational.38.46
|