Citation: | FU Qiang, CHEN Xiang-yang, ZHENG Zi-liang, LI Qing, HE Wei. Research progress on visual perception system of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2019, 41(12): 1512-1519. doi: 10.13374/j.issn2095-9389.2019.03.08.001 |
[1] |
Lee N, Lee S, Cho H, et al. Effect of flexibility on flapping wing characteristics in hover and forward flight. Comput Fluids, 2018, 173: 111 doi: 10.1016/j.compfluid.2018.03.017
|
[2] |
Zhang C, Rossi C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir Biomim, 2017, 12(2): 025005 doi: 10.1088/1748-3190/aa58d3
|
[3] |
De Croon G, Per?in M, Remes B D W, et al. The DelFly: Design Aerodynamics and Artificial Intelligence of a Flapping Wing Robot. Netherlands: Springer, 2016
|
[4] |
Tijmons S. Stereo Vision for Flapping Wing MAVs: Design of an Obstacle Avoidance System [Dissertation]. Delft: Delft University of Technology, 2012
|
[5] |
Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon, 2016: 5645
|
[6] |
Yang W Q, Wang L G, Song B F. Dove: a biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
|
[7] |
Festo AG & Co. KG. BionicFlyingFox: ultra-lightweight flying object with intelligent kinematics[EB/OL]. Festo (2018-03)[2019-03-08].https://www.festo.com/group/en/cms/13130.htm
|
[8] |
McCurdy L Y, Maniscalco B, Metcalfe J, et al. Anatomical coupling between distinct metacognitive systems for memory and visual perception. J Neurosci, 2013, 33(5): 1897 doi: 10.1523/JNEUROSCI.1890-12.2013
|
[9] |
Julian R C, Rose C J, Hu H, et al. Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station // Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems. St. Paul, 2013: 103
|
[10] |
Bourque A E, Bedwani S, Carrier J F, et al. Particle filter-based target tracking algorithm for magnetic resonance-guided respiratory compensation: robustness and accuracy assessment. Int J Radiat Oncol Biol Phys, 2018, 100(2): 325 doi: 10.1016/j.ijrobp.2017.10.004
|
[11] |
Rosen M H, le Pivain G, Sahai R, et al. Development of a 3.2 g untethered flapping-wing platform for flight energetics and control experiments // IEEE International Conference on Robotics and Automation. Stockholm, 2016: 3227
|
[12] |
Dorociak R D, Cuddeford T J. Determining 3-D system accuracy for the Vicon 370 system. Gait Posture, 1995, 3(2): 88
|
[13] |
Touré B, Schanen J L, Gerbaud L, et al. EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization, and technological choice. IEEE Trans Power Electron, 2013, 28(3): 1145 doi: 10.1109/TPEL.2012.2207128
|
[14] |
Tran X T, Oh H, Kim I R, et al. Attitude stabilization of flapping micro-air vehicles via an observer-based sliding mode control method. Aerosp Sci Technol, 2018, 76: 386 doi: 10.1016/j.ast.2018.01.045
|
[15] |
Grip H F, Fossen T I, Johansen T A, et al. Attitude estimation using biased gyro and vector measurements with time-varying reference vectors. IEEE Trans Autom Control, 2012, 57(5): 1332 doi: 10.1109/TAC.2011.2173415
|
[16] |
Wang T. Stabilizing Platform: U.S. Patent, 8938160. 2015-1-20
|
[17] |
Koh L P, Wich S A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci, 2012, 5(2): 121 doi: 10.1177/194008291200500202
|
[18] |
Dong J, Liu H B. Video stabilization for strict real-time applications. IEEE Trans Circuits Syst Video Technol, 2017, 27(4): 716 doi: 10.1109/TCSVT.2016.2589860
|
[19] |
Aguilar W G, Angulo C, Pardo J A. Motion intention optimization for multirotor robust video stabilization // 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies. Pucon, 2017: 1
|
[20] |
Mingkhwan E, Khawsuk W. Digital image stabilization technique for fixed camera on small size drone // 2017 Third Asian Conference on Defence Technology. Phuket, 2017: 12
|
[21] |
Aguilar W G, Angulo C. Real-time model-based video stabilization for microaerial vehicles. Neural Process Lett, 2016, 43(2): 459 doi: 10.1007/s11063-015-9439-0
|
[22] |
Lim A, Ramesh B, Yang Y, et al. Real-time optical flow-based video stabilization for unmanned aerial vehicles. J Real-Time Image Process, 2017: 1
|
[23] |
Pae D S, An C G, Kang T K, et al. Advanced digital image stabilization using similarity-constrained optimization. Multimedia Tools Appl, 2018, 78(12): 16489
|
[24] |
Han J H, Ma Y, Zhou B, et al. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci Remote Sens Lett, 2014, 11(12): 2168 doi: 10.1109/LGRS.2014.2323236
|
[25] |
Zorbas D, Razafindralambo T, Luigi D P P, et al. Energy efficient mobile target tracking using flying drones. Procedia Comput Sci, 2013, 19: 80 doi: 10.1016/j.procs.2013.06.016
|
[26] |
Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images. IEEE Trans Geosci Remote Sens, 2016, 54(8): 4806 doi: 10.1109/TGRS.2016.2551720
|
[27] |
Minaeian S, Liu J, Son Y J. Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Trans Syst Man Cybern Syst, 2016, 46(7): 1005 doi: 10.1109/TSMC.2015.2491878
|
[28] |
Lin S G, Garratt M A, Lambert A J. Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment. Auton Robot, 2017, 41(4): 881 doi: 10.1007/s10514-016-9564-2
|
[29] |
Baek S S, Bermudez F L G, Fearing R S. Flight control for target seeking by 13 gram ornithopter // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 2674
|
[30] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
|
[31] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
|
[32] |
Liu Y, Jing X Y, Nie J H, et al. Context-aware three-dimensional mean-shift with occlusion handling for robust object tracking in RGB-D videos. IEEE Trans Multimedia, 2019, 21(3): 664 doi: 10.1109/TMM.2018.2863604
|
[33] |
Gan M G, Cheng Y L, Wang Y N, et al. Hierarchical particle filter tracking algorithm based on multi-feature fusion. J Syst Eng Electron, 2016, 27(1): 51
|
[34] |
Held D, Thrun S, Savarese S. Learning to track at 100 fps with deep regression networks // European Conference on Computer Vision. Amsterdam, 2016: 749
|
[35] |
Milan A, Rezatofighi S H, Dick A, et al. Online multi-target tracking using recurrent neural networks // Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, 2017: 4225
|
[36] |
Chen P, Dang Y J, Liang R H, et al. Real-time object tracking on a drone with multi-inertial sensing data. IEEE Trans Intell Transp Syst, 2018, 19(1): 131 doi: 10.1109/TITS.2017.2750091
|
[37] |
Scheper K Y W, Karásek M, De Wagter C, et al. First autonomous multi-room exploration with an insect-inspired flapping wing vehicle // 2018 IEEE International Conference on Robotics and Automation. Brisbane, 2018: 5546
|
[38] |
Lee J, Ryu S, Kim T, et al. Learning-based path tracking control of a flapping-wing micro air vehicle // 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, 2018: 7096
|
[39] |
Butt A A, Collins R T. Multi-target tracking by lagrangian relaxation to min-cost network flow // IEEE Conference on Computer Vision and Pattern Recognition. Portland, 2013: 1846
|
[40] |
賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sin, 2017, 43(5): 685
|
[41] |
Lukin V P, Nosov V V, Torgaev A V. Features of optical image jitter in a random medium with a finite outer scale. Appl Opt, 2014, 53(10): B196 doi: 10.1364/AO.53.00B196
|
[42] |
He W, Huang H F, Chen Y N, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inform Sci, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1
|
[43] |
Tijmons S, de Croon G C H E, Remes B D W, et al. Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV. IEEE Trans Robot, 2017, 33(4): 858 doi: 10.1109/TRO.2017.2683530
|
[44] |
Ryu S, Kim H J. Development of a flapping-wing micro air vehicle capable of autonomous hovering with onboard measurements // IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, 2017: 3239
|
[45] |
Harik E H C, Guérin F, Guinand F, et al. UAV-UGV cooperation for objects transportation in an industrial area // IEEE International Conference on Industrial Technology. Seville, 2015: 547
|