<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
FU Qiang, CHEN Xiang-yang, ZHENG Zi-liang, LI Qing, HE Wei. Research progress on visual perception system of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2019, 41(12): 1512-1519. doi: 10.13374/j.issn2095-9389.2019.03.08.001
Citation: FU Qiang, CHEN Xiang-yang, ZHENG Zi-liang, LI Qing, HE Wei. Research progress on visual perception system of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2019, 41(12): 1512-1519. doi: 10.13374/j.issn2095-9389.2019.03.08.001

Research progress on visual perception system of bionic flapping-wing aerial vehicles

doi: 10.13374/j.issn2095-9389.2019.03.08.001
More Information
  • Corresponding author: E-mail: weihe@ieee.org
  • Received Date: 2019-03-08
  • Publish Date: 2019-12-01
  • The bionic flapping-wing aerial vehicle (FWAV) is a kind of aerial vehicle that imitates birds and insects and generates lift and thrust forces using active wing movement. Given its advantages, such as high flight efficiency, strong maneuverability, and good imperceptibility, FWAVs have attracted considerable attention from researchers in recent years. Given its compact structure and easy operation, the small FWAV can adapt itself to complex environments. However, some restrictions are also imposed on its onboard load capacity and battery endurance time. That is, sensors with large weight and high power consumption are no longer suitable for FWAVs in many scenarios. To the best of our knowledge, most of the information obtained by organisms from nature is acquired through vision. As an efficient way to obtain information, vision plays an irreplaceable role in the application of FWAVs. Vision sensors have many advantages, such as light weight, low power consumption, and rich image information. Therefore, these sensors are suitable for FWAVs. With the development of microelectronics and image processing technologies, visual perception systems of the FWAV have also made important progress. First, this study introduces the visual perception system of several representative FWAVs at home and abroad, which can be classified into two categories, i.e., onboard and off-board visual perception systems. Then, this study briefly reviews three key technologies of the visual perception system of FWAVs, namely, image stabilization, object detection and recognition, and object tracking technologies. As a result, research on the visual perception system of FWAVs is still at the initial stage. Finally, this study provides the future research directions of the visual perception system of FWAVs, such as image stabilization, onboard real-time processing, object detection and recognition, and three-dimensional reconstruction.

     

  • loading
  • [1]
    Lee N, Lee S, Cho H, et al. Effect of flexibility on flapping wing characteristics in hover and forward flight. Comput Fluids, 2018, 173: 111 doi: 10.1016/j.compfluid.2018.03.017
    [2]
    Zhang C, Rossi C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir Biomim, 2017, 12(2): 025005 doi: 10.1088/1748-3190/aa58d3
    [3]
    De Croon G, Per?in M, Remes B D W, et al. The DelFly: Design Aerodynamics and Artificial Intelligence of a Flapping Wing Robot. Netherlands: Springer, 2016
    [4]
    Tijmons S. Stereo Vision for Flapping Wing MAVs: Design of an Obstacle Avoidance System [Dissertation]. Delft: Delft University of Technology, 2012
    [5]
    Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon, 2016: 5645
    [6]
    Yang W Q, Wang L G, Song B F. Dove: a biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
    [7]
    Festo AG & Co. KG. BionicFlyingFox: ultra-lightweight flying object with intelligent kinematics[EB/OL]. Festo (2018-03)[2019-03-08].https://www.festo.com/group/en/cms/13130.htm
    [8]
    McCurdy L Y, Maniscalco B, Metcalfe J, et al. Anatomical coupling between distinct metacognitive systems for memory and visual perception. J Neurosci, 2013, 33(5): 1897 doi: 10.1523/JNEUROSCI.1890-12.2013
    [9]
    Julian R C, Rose C J, Hu H, et al. Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station // Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems. St. Paul, 2013: 103
    [10]
    Bourque A E, Bedwani S, Carrier J F, et al. Particle filter-based target tracking algorithm for magnetic resonance-guided respiratory compensation: robustness and accuracy assessment. Int J Radiat Oncol Biol Phys, 2018, 100(2): 325 doi: 10.1016/j.ijrobp.2017.10.004
    [11]
    Rosen M H, le Pivain G, Sahai R, et al. Development of a 3.2 g untethered flapping-wing platform for flight energetics and control experiments // IEEE International Conference on Robotics and Automation. Stockholm, 2016: 3227
    [12]
    Dorociak R D, Cuddeford T J. Determining 3-D system accuracy for the Vicon 370 system. Gait Posture, 1995, 3(2): 88
    [13]
    Touré B, Schanen J L, Gerbaud L, et al. EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization, and technological choice. IEEE Trans Power Electron, 2013, 28(3): 1145 doi: 10.1109/TPEL.2012.2207128
    [14]
    Tran X T, Oh H, Kim I R, et al. Attitude stabilization of flapping micro-air vehicles via an observer-based sliding mode control method. Aerosp Sci Technol, 2018, 76: 386 doi: 10.1016/j.ast.2018.01.045
    [15]
    Grip H F, Fossen T I, Johansen T A, et al. Attitude estimation using biased gyro and vector measurements with time-varying reference vectors. IEEE Trans Autom Control, 2012, 57(5): 1332 doi: 10.1109/TAC.2011.2173415
    [16]
    Wang T. Stabilizing Platform: U.S. Patent, 8938160. 2015-1-20
    [17]
    Koh L P, Wich S A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci, 2012, 5(2): 121 doi: 10.1177/194008291200500202
    [18]
    Dong J, Liu H B. Video stabilization for strict real-time applications. IEEE Trans Circuits Syst Video Technol, 2017, 27(4): 716 doi: 10.1109/TCSVT.2016.2589860
    [19]
    Aguilar W G, Angulo C, Pardo J A. Motion intention optimization for multirotor robust video stabilization // 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies. Pucon, 2017: 1
    [20]
    Mingkhwan E, Khawsuk W. Digital image stabilization technique for fixed camera on small size drone // 2017 Third Asian Conference on Defence Technology. Phuket, 2017: 12
    [21]
    Aguilar W G, Angulo C. Real-time model-based video stabilization for microaerial vehicles. Neural Process Lett, 2016, 43(2): 459 doi: 10.1007/s11063-015-9439-0
    [22]
    Lim A, Ramesh B, Yang Y, et al. Real-time optical flow-based video stabilization for unmanned aerial vehicles. J Real-Time Image Process, 2017: 1
    [23]
    Pae D S, An C G, Kang T K, et al. Advanced digital image stabilization using similarity-constrained optimization. Multimedia Tools Appl, 2018, 78(12): 16489
    [24]
    Han J H, Ma Y, Zhou B, et al. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci Remote Sens Lett, 2014, 11(12): 2168 doi: 10.1109/LGRS.2014.2323236
    [25]
    Zorbas D, Razafindralambo T, Luigi D P P, et al. Energy efficient mobile target tracking using flying drones. Procedia Comput Sci, 2013, 19: 80 doi: 10.1016/j.procs.2013.06.016
    [26]
    Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images. IEEE Trans Geosci Remote Sens, 2016, 54(8): 4806 doi: 10.1109/TGRS.2016.2551720
    [27]
    Minaeian S, Liu J, Son Y J. Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Trans Syst Man Cybern Syst, 2016, 46(7): 1005 doi: 10.1109/TSMC.2015.2491878
    [28]
    Lin S G, Garratt M A, Lambert A J. Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment. Auton Robot, 2017, 41(4): 881 doi: 10.1007/s10514-016-9564-2
    [29]
    Baek S S, Bermudez F L G, Fearing R S. Flight control for target seeking by 13 gram ornithopter // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 2674
    [30]
    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
    [31]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
    [32]
    Liu Y, Jing X Y, Nie J H, et al. Context-aware three-dimensional mean-shift with occlusion handling for robust object tracking in RGB-D videos. IEEE Trans Multimedia, 2019, 21(3): 664 doi: 10.1109/TMM.2018.2863604
    [33]
    Gan M G, Cheng Y L, Wang Y N, et al. Hierarchical particle filter tracking algorithm based on multi-feature fusion. J Syst Eng Electron, 2016, 27(1): 51
    [34]
    Held D, Thrun S, Savarese S. Learning to track at 100 fps with deep regression networks // European Conference on Computer Vision. Amsterdam, 2016: 749
    [35]
    Milan A, Rezatofighi S H, Dick A, et al. Online multi-target tracking using recurrent neural networks // Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, 2017: 4225
    [36]
    Chen P, Dang Y J, Liang R H, et al. Real-time object tracking on a drone with multi-inertial sensing data. IEEE Trans Intell Transp Syst, 2018, 19(1): 131 doi: 10.1109/TITS.2017.2750091
    [37]
    Scheper K Y W, Karásek M, De Wagter C, et al. First autonomous multi-room exploration with an insect-inspired flapping wing vehicle // 2018 IEEE International Conference on Robotics and Automation. Brisbane, 2018: 5546
    [38]
    Lee J, Ryu S, Kim T, et al. Learning-based path tracking control of a flapping-wing micro air vehicle // 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, 2018: 7096
    [39]
    Butt A A, Collins R T. Multi-target tracking by lagrangian relaxation to min-cost network flow // IEEE Conference on Computer Vision and Pattern Recognition. Portland, 2013: 1846
    [40]
    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685

    He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sin, 2017, 43(5): 685
    [41]
    Lukin V P, Nosov V V, Torgaev A V. Features of optical image jitter in a random medium with a finite outer scale. Appl Opt, 2014, 53(10): B196 doi: 10.1364/AO.53.00B196
    [42]
    He W, Huang H F, Chen Y N, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inform Sci, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1
    [43]
    Tijmons S, de Croon G C H E, Remes B D W, et al. Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV. IEEE Trans Robot, 2017, 33(4): 858 doi: 10.1109/TRO.2017.2683530
    [44]
    Ryu S, Kim H J. Development of a flapping-wing micro air vehicle capable of autonomous hovering with onboard measurements // IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, 2017: 3239
    [45]
    Harik E H C, Guérin F, Guinand F, et al. UAV-UGV cooperation for objects transportation in an industrial area // IEEE International Conference on Industrial Technology. Seville, 2015: 547
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (2420) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频