<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHOU Xian-liang, LIU Chang-wu, FENG Bo, GUO Bing-bing, LU Yong-hu, ZHANG Lian-wei. Effects of dry-wet circulation on cement-based composite filling materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001
Citation: ZHOU Xian-liang, LIU Chang-wu, FENG Bo, GUO Bing-bing, LU Yong-hu, ZHANG Lian-wei. Effects of dry-wet circulation on cement-based composite filling materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001

Effects of dry-wet circulation on cement-based composite filling materials

doi: 10.13374/j.issn2095-9389.2019.03.05.001
More Information
  • In recent years, cement-based composite materials have been widely used in mine filling, which can well solve the hidden danger of goaf collapse. However, when the water table and surrounding rock moisture content change, the filling materials will be in the process of dry and wet alternation, which will affect the long-term stability of the filling materials and goaf. In order to explore the influence of dry and wet cycles on the long-term stability of cement-based composite filling materials, taking water-cement ratio 4∶1 cement-based composites as the research object and using ETM mechanical test system, X-ray diffraction (XRD) and scanning electron microscopy (SEM) device, uniaxial compressive strength tests were carried out in the state of "water saturation" and "water loss" under different dry-wet circulation. The influence mechanism of dry-wet circulation was discussed by phase analysis and microstructure. The results show that as the number of dry-wet circulation increases, the loss rate increases gradually while the water content and bulk density decrease, the peak intensity first increases and then decreases, and the increase is as high as 9% under the saturated state. The water loss rate, water content and bulk density do not change much under the condition of "water loss", while the peak strength decreases from the initial state to up to 13.5%. The elastic modulus and residual strength of the two states show a downward trend. Through mechanism analysis, it is found that carbonation reaction is the main reason for material strength reduction in the "dry" process, while the CaCO3 and other materials are converted into ettringite (AFT) and thaumasite (TSA) with some bearing capacity during the absorbing water process in "wet" process, which is the main reason for the strength recovery of materials. However, the recovery ability is limited, and the long-term dry-wet circulation will adversely affect the stability of cement-based composite filling material.

     

  • loading
  • [1]
    錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 2版. 徐州: 中國礦業大學出版社, 2010

    Qian M G, Shi P W, Xu J L. Mine Pressure and Rock Formation Control. 2nd Ed. Xuzhou: China University of Mining and Technology Press, 2010
    [2]
    胡炳南. 我國煤礦充填開采技術及其發展趨勢. 煤炭科學技術, 2012, 40(11):1

    Hu B N. Backfill mining technology and development tendency in China coal mine. Coal Sci Technol, 2012, 40(11): 1
    [3]
    趙才智, 周華強, 瞿群迪, 等. 膏體充填材料力學性能的初步實驗. 中國礦業大學學報, 2004, 33(2):35

    Zhao C Z, Zhou H Q, Qu Q D, et al. Preliminary test on mechanical properties of paste filling material. J China Univ Min Technol, 2004, 33(2): 35
    [4]
    張元功, 董鳳寶. 城鎮建筑群下矸石充填開采新技術的研究與實踐. 煤礦開采, 2008, 13(1):31 doi: 10.3969/j.issn.1006-6225.2008.01.011

    Zhang Y G, Dong F B. Research and practice of new mining technologies by backfilling with refuse under buildings in town. Coal Min Technol, 2008, 13(1): 31 doi: 10.3969/j.issn.1006-6225.2008.01.011
    [5]
    王強. 新型高水材料充填開采試驗研究. 中州煤炭, 2016(9):65

    Wang Q. Experimental research on filling mining of new high-water material. Zhongzhou Coal, 2016(9): 65
    [6]
    崔景昆, 豐云雷, 孫春東, 等. 大采高高水材料巷旁充填體寬度與強度試驗研究與應用. 煤礦開采, 2014, 19(5):58

    Cui J K, Feng Y L, Sun C D, at el. Test of high-water material width and strength for roadway-side stowing and its application. Coal Min Technol, 2014, 19(5): 58
    [7]
    顏志平, 漆泰岳, 張連信, 等. ZKD高水速凝材料及其泵送充填技術的研究. 煤炭學報, 1997, 22(3):270 doi: 10.3321/j.issn:0253-9993.1997.03.009

    Yan Z P, Qi T Y, Zhang L X, at el. Study of ZKD quick-setting materials with high water content and technique of pump packing. J China Coal Soc, 1997, 22(3): 270 doi: 10.3321/j.issn:0253-9993.1997.03.009
    [8]
    周華強, 侯朝炯, 易宏偉, 等. 國內外高水巷旁充填技術的研究與應用. 礦山壓力與頂板管理, 1991(4):2

    Zhou H Q, Hou C J, Yi H W, at el. Research and application of the roadside backfilling technique with high water content materials in China and abroad. Ground Press Strata Control, 1991(4): 2
    [9]
    孫春東, 馮光明. 新型高水材料巷旁充填沿空留巷技術. 煤礦開采, 2010, 15(1):58 doi: 10.3969/j.issn.1006-6225.2010.01.020

    Sun C D, Feng G M. Technology of retaining roadway along gob by stowing with high-water-content material. Coal Min Technol, 2010, 15(1): 58 doi: 10.3969/j.issn.1006-6225.2010.01.020
    [10]
    賈紅果, 來永輝, 王偉, 等. 沿空留巷條件下新型高水速凝材料巷旁充填技術及其應用. 中國煤炭, 2015, 41(1):51 doi: 10.3969/j.issn.1006-530X.2015.01.012

    Jia H G, Lai Y H, Wang W, at el. Roadway-side packing technology with new type high-water rapid hardening materials under the conditions of gob-side entry retaining and its application. China Coal, 2015, 41(1): 51 doi: 10.3969/j.issn.1006-530X.2015.01.012
    [11]
    史國躍. 高瓦斯礦井高水充填墩柱沿空留巷技術. 煤炭科學技術, 2014, 42(7):30

    Shi G Y. Gateway retained along goaf technology with pier pillar backfilled with high water material in high gassy mine. Coal Scie Technol, 2014, 42(7): 30
    [12]
    王鵬, 張耀輝. 沿空留巷巷旁高水充填材料性能改進. 煤礦安全, 2016, 47(2):51

    Wang P, Zhang Y H. Performance improvement for high-water-content filling material beside gob-side entry retaining. Saf Coal Mines, 2016, 47(2): 51
    [13]
    馮光明. 高水材料巷旁充填礦壓觀測與研究. 礦山壓力與頂板管理, 1998(4):13

    Feng G M. Field measurement and analysis of ground behavior of roadway retained by packing high water content material along goaf side. Ground Press Strata Control, 1998(4): 13
    [14]
    謝輝, 劉長武, 何濤. 高水材料充填開采工作面頂底板巖層活動規律分析. 金屬礦山, 2014(5):5

    Xie H, Liu C W, He T. Analysis on the law of roof and floor strata movement in coal mining with high-water material backfilling. Metal Mine, 2014(5): 5
    [15]
    蔡嗣經, 毛市龍, 方祖烈. 高水速凝充填材料的風化特征和風化機理. 北京科技大學學報, 1996, 18(5):406

    Cai S J, Mao S L, Fang Z L. Weathering characteristics and mechanisms of rapid-hardening backfilling materials. J Univ Sci Technol Beijing, 1996, 18(5): 406
    [16]
    宋存義, 程相利, 汪增樂. 鈣礬石材料硬化體風化機理. 北京科技大學學報, 1999, 21(5):459 doi: 10.3321/j.issn:1001-053X.1999.05.012

    Song C Y, Cheng X L, Wang Z L. Weathering mechanism of ettringite. J Univ Sci Technol Beijing, 1999, 21(5): 459 doi: 10.3321/j.issn:1001-053X.1999.05.012
    [17]
    馬芹永, 郁培陽, 袁璞. 干濕循環對深部粉砂巖蠕變特性影響的試驗研究. 巖石力學與工程學報, 2018, 37(3):593

    Ma Q Y, Yu P Y, Yuan P. Experimental study on creep properties of deep siltstone under cyclic wetting and drying. Chin J Rock Mech Eng, 2018, 37(3): 593
    [18]
    王崢. 干濕循環對摻粉煤灰高水材料力學特性影響. 粉煤灰綜合利用, 2018(3):40 doi: 10.3969/j.issn.1005-8249.2018.03.011

    Wang Z. Effects of dry-wet cycles on mechanical properties of fly ash high-moisture materials. Fly Ash Comprehens Utiliz, 2018(3): 40 doi: 10.3969/j.issn.1005-8249.2018.03.011
    [19]
    謝輝, 劉長武. 含水率對高水材料結石體變形特性的影響分析. 四川大學學報:工程科學版, 2013, 45(增刊 1):1

    Xie H, Liu C W. Analysis on influence of moisture content on deformation characteristics of the high-water-content material stone. J Sichuan Univ Eng Sci Ed, 2013, 45(Suppl 1): 1
    [20]
    劉丹丹. 高水速凝材料水化硬化機理研究[學位論文]. 徐州: 中國礦業大學, 2015

    Liu D D. Study on Hydrating and Hardening Mechanisms of High-Water Rapid-Setting Material [Dissertation]. Xuzhou: China University of Mining and Technology, 2015
    [21]
    李碩, 李楊. 碳硫硅鈣石與鈣礬石的微觀區別. 四川建材, 2013, 39(5):34 doi: 10.3969/j.issn.1672-4011.2013.05.018

    Li S, Li Y. Microcosmic differences between carbosulfite and ettringite. Sichuan Build Mater, 2013, 39(5): 34 doi: 10.3969/j.issn.1672-4011.2013.05.018
    [22]
    Barnett S J, Halliwell M A, Crammond N J, et al. Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting. Cem Concr Compos, 2002, 24(3-4): 339 doi: 10.1016/S0958-9465(01)00085-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (1382) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频