<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
ZHANG Xuan-kai, ZHANG Hui, LI Dong, LIU Ying-shu, ZHANG Hui-yuan, WANG Run, GUO Ya-lou. Measurement of gas-liquid reaction heat based on synchronous thermal tracking[J]. Chinese Journal of Engineering, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010
Citation: ZHANG Xuan-kai, ZHANG Hui, LI Dong, LIU Ying-shu, ZHANG Hui-yuan, WANG Run, GUO Ya-lou. Measurement of gas-liquid reaction heat based on synchronous thermal tracking[J]. Chinese Journal of Engineering, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010

Measurement of gas-liquid reaction heat based on synchronous thermal tracking

doi: 10.13374/j.issn2095-9389.2019.03.010
More Information
  • Corresponding author: ZHANG Hui, E-mail: zhanghui56@ustb.edu.cn
  • Received Date: 2018-03-20
  • Publish Date: 2019-03-20
  • In the process of CO2 capture by chemical absorption, regeneration energy consumption accounts for 70%-80% of the total energy consumption. Currently, the most critical issue is how to reduce the energy consumption of regeneration. Equipment such as micro-reaction calorimeter (Thermal Hazard Technology provides), differential reaction calorimeter and Setaram C80 thermal differential calorimeter is used to compare the reference and sample solutions, which are simultaneously heated to compensate for heat loss of the sample solution during the measurement, but the heat of reaction cannot be directly measured. In this study, the reaction heats of MEA (ethanolamine) and MDEA (N-methyldiethanolamine) with CO2 at 10%, 20%, 30%, 40%, and 50% mass fraction were measured by synchronous thermal tracing technique. By synchronously controlling the temperature of the shell of the container and the internal solution, the temperature gradient was reduced to form a "thermal barrier"to prevent the solution from exchanging heat with the external environment in the form of conduction, convection, or radiation. A dynamic adiabatic environment was obtained without thermal compensation. The accuracy of direct measurement of the trace gas-liquid reaction heat was improved to save the sample amount. The experimental results show that the simultaneous thermal tracking method is more accurate. With the increase of solution concentration, the reaction heat of MEA first decreases and then increases, and the reaction heat of MDEA decreases gradually. When the mass concentration of MEA and MDEA is between 20% and 40%, the mass concentration has no significant effect on the reaction heat. The curve of temperature rise formed by exothermic reaction appears to be concave.

     

  • loading
  • [1]
    杜敏, 張力, 馮波. pH值調節劑對CO2吸收富液解吸能耗的影響. 重慶大學學報, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm

    Du M, Zhang L, Feng B. Effect of pH controlling method on energy consumption of CO2 desorption from rsch-solvent. J Chongqing Univ, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm
    [2]
    秦鋒, 王淑娟, Svendsen H F, 等. 氨法脫碳系統再生能耗的研究. 化工學報, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm

    Qin F, Wang S J, Svendsen H F, et al. Research on heat requirement of aqua ammonia regeneration for CO2 capture. CIESC J, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm
    [3]
    張克舫, 劉中良, 王遠亞, 等. 化學吸收法CO2捕集解吸能耗的分析計算. 化工進展, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm

    Zhang K F, Liu Z L, Wang Y Y, et al. Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method. Chem Ind Eng Prog, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm
    [4]
    Ahmady A, Hashim M A, Aroua M K. Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib, 2011, 309(1): 76 doi: 10.1016/j.fluid.2011.06.029
    [5]
    Zhang F, Ma J W, Zhou Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. Chem Eng J, 2012, 181-182: 222 doi: 10.1016/j.cej.2011.11.066
    [6]
    Arcis H, Rodier L, Ballerat-Busserolles K, et al. Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J Chem Thermodyn, 2009, 41(6): 783 doi: 10.1016/j.jct.2009.01.005
    [7]
    ?i L E, Lundberg J, Pedersen M, et al. Measurements of CO2 absorption and heat consumption in laboratory rig. Energy Procedia, 2014, 63: 1569 doi: 10.1016/j.egypro.2014.11.166
    [8]
    齊國杰, 王淑娟, Yu Hai, 等. 氨水吸收CO2的吸收熱預測模型. 化工學報, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm

    Qi G J, Wang S J, Yu H, et al. Prediction model of absorption heat for CO2 capture using aqueous ammonia. CIESC J, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm
    [9]
    劉炳成, 史澄輝, 李慶領, 等. 電廠CO2捕集系統DEA化學吸收劑性能與能耗實驗研究. 武漢大學學報(工學版), 2012, 45(6): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm

    Liu B C, Shi C H, Li Q L, et al. Experimental investigation of performances and renewable energy consumption of absorbent DEA in CO2 capture system. Eng J Wuhan Univ, 2012, 45(6): 817 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm
    [10]
    陳健, 羅偉亮, 李晗. 有機胺吸收二氧化碳的熱力學和動力學研究進展. 化工學報, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002

    Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines. CIESC J, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002
    [11]
    Gupta M, Svendsen H F. Temperature dependent enthalpy of CO2 absorption for amines and amino acids from theoretical calculations at infinite dilution. Energy Procedia, 2014, 63: 1106 doi: 10.1016/j.egypro.2014.11.119
    [12]
    Van Nierop E A, Hormoz S, House K Z, et al. Effect of absorption enthalpy on temperature-swing CO2 separation process performance. Energy Procedia, 2011, 4: 1783 doi: 10.1016/j.egypro.2011.02.054
    [13]
    Liu J Z, Wang S J, Zhao B, et al. Absorption of carbon dioxide in aqueous ammonia. Energy Procedia, 2009, 1(1): 933 doi: 10.1016/j.egypro.2009.01.124
    [14]
    Liu J Z, Wang S J, Qi G J, et al. Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia. Energy Procedia, 2011, 4: 525 doi: 10.1016/j.egypro.2011.01.084
    [15]
    Srisang W, Pouryousefi F, Osei P A, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chem Eng Sci, 2017, 170: 48 doi: 10.1016/j.ces.2017.01.049
    [16]
    Abdulkadir A, Rayer A V, Quang D V, et al. Heat of absorption and specific heat of carbon dioxide in aqueous solutions of monoethanolamine, 3-piperidinemethanol and their blends. Energy Procedia, 2014, 63: 2070 doi: 10.1016/j.egypro.2014.11.223
    [17]
    Xie Q, Aroonwilas A, Veawab A. Measurement of heat of CO2 absorption into 2-Amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter. Energy Procedia, 2013, 37: 826 doi: 10.1016/j.egypro.2013.05.175
    [18]
    Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=372.9 K and pressures up to 5 MPa. J Chem Thermodyn, 2009, 41(7): 836 doi: 10.1016/j.jct.2009.01.013
    [19]
    Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa. J Chem Thermodyn, 2008, 40(6): 1022 doi: 10.1016/j.jct.2008.01.028
    [20]
    Arcis H, Rodier L, Coxam J Y. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol. J Chem Thermodyn, 2007, 39(6): 878 doi: 10.1016/j.jct.2006.11.011
    [21]
    Kim I, Svendsen H F. Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(Aminoethyl) ethanolamine (AEEA) solutions. Ind Eng Chem Res, 2007, 46(17): 5803 doi: 10.1021/ie0616489
    [22]
    郭東方, 郜時旺, 羅偉亮, 等. 環丁砜對乙醇胺溶液吸收和解吸CO2的影響. 化工學報, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm

    Guo D F, Gao S W, Luo W L, et al. Effect of sulfolane on CO2 absorption and desorption by monethanolamine aqueous solution. CIESC J, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm
    [23]
    Svensson H, Hulteberg C, Karlsson H T. Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine. Int J Greenhouse Gas Control, 2013, 17: 89 doi: 10.1016/j.ijggc.2013.04.021
    [24]
    Kim I, Hoff K A, Hessen E T, et al. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem Eng Sci, 2009, 64(9): 2027 doi: 10.1016/j.ces.2008.12.037
    [25]
    Arcis H, Ballerat-Busserolles K, Rodier L, et al. Measurement and modeling of enthalpy of solution of carbon dioxide in aqueous solutions of diethanolamine at temperatures of (322.5 and 372.9) K and pressures up to 3 MPa. J Chem Eng Data, 2012, 57(3): 840 doi: 10.1021/je201012e
    [26]
    王曉娜. 基于改進PID的恒溫控制軟件設計與實現. 計算機仿真, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm

    Wang X N. Design and implementation of constant temperature control software based on improved PID. Comput Simul, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm
    [27]
    李劍, 谷俊杰. PID參數整定方法進展. 電力情報, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004

    Li J, Gu J J. Development of tuning methods for PID parameters. Inform Electr Power, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004
    [28]
    楊振元, 關艷翠, 趙碩偉. 基于自整定PID的溫度控制器設計. 山東工業技術, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm

    Yang Z Y, Guan Y C, Zhao S W. Temperature controller design based on self-tuning PID. Shandong Ind Technol, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm
    [29]
    Mathonat C, Majer V, Mather A E, et al. Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions. Ind Eng Chem Res, 1998, 37(10): 4136 doi: 10.1021/ie9707679
    [30]
    Kim I, Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Int J Greenhouse Gas Control, 2011, 5(3): 390 doi: 10.1016/j.ijggc.2010.05.003
    [31]
    Kim I, Hoff K A, Mejdell T. Heat of absorption of CO2 with aqueous solutions of MEA: new experimental data. Energy Procedia, 2014, 63: 1446 doi: 10.1016/j.egypro.2014.11.154
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (859) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频