<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
LIU Bing, XU Zong-wei, LI Rui, HE Zong-du. In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon[J]. Chinese Journal of Engineering, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007
Citation: LIU Bing, XU Zong-wei, LI Rui, HE Zong-du. In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon[J]. Chinese Journal of Engineering, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007

In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon

doi: 10.13374/j.issn2095-9389.2019.03.007
More Information
  • Corresponding author: LIU Bing E-mail: liubing@tjcu.edu.cn
  • Received Date: 2018-02-24
  • Publish Date: 2019-03-20
  • Single-crystal silicon is widely used in optoelectronics and micro-electromechanical systems because of its unique physical and chemical properties. Ductile-mode removal of single-crystal silicon can be realized by strictly controlling the cutting parameters, which significantly affect the machining efficiency. To improve the surface quality without reducing the machining efficiency, nanometric cutting experiments were performed using high-resolution scanning electron microscopy (SEM) with online observation. First, the samples were prepared, and the nanometric cutting edge of a diamond cutting tool was fabricated by focused ion beam (FIB) technology. Then, the initiation and propagation of the micro cracks were observed online by scanning electron microscopy to analyze the machining behavior of single-crystal silicon in brittle mode. Finally, using diamond cutting tools with edge radii of 40, 50, and 60 nm, respectively, the effects of crystal orientation and tool edge radius on the critical thickness of brittle-ductile transition of single-crystal silicon were studied. The experimental results show that in the presently studied crystal orientations, single-crystal silicon is most easily removed in the ductile mode along the[111] direction on the (111) plane, where the critical thickness of brittle-ductile transition is about 80 nm. In addition, the smaller the tool edge radius is, the more prone is the single-crystal silicon to brittle fracture in the nanocutting process. When the tool edge radius is 40 nm, the critical thickness of brittle-ductile transition is about 40 nm. However, the machined surface quality increases with decrease of the tool edge radius. This indicates that the sharper the cutting tool, the easier it is to obtain a high-quality surface.

     

  • loading
  • [1]
    Arif M, Rahman M, San W Y. A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol, 2012, 63(5-8): 481 doi: 10.1007/s00170-012-3937-2
    [2]
    Zhou M, Wang X J, Ngoi B K A, et al. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol, 2002, 121(2-3): 243 doi: 10.1016/S0924-0136(01)01262-6
    [3]
    趙宏偉, 楊柏豪, 趙宏健, 等. 單晶硅納米力學性能的測試. 光學精密工程, 2009, 17(7): 1602 doi: 10.3321/j.issn:1004-924X.2009.07.016

    Zhao H W, Yang B H, Zhao H J, et al. Test of nanomechanical properties of single crystal silicon. Opt Precis Eng, 2009, 17(7): 1602 doi: 10.3321/j.issn:1004-924X.2009.07.016
    [4]
    龔帥, 任學沖, 陳剛, 等. 微觀組織對高速車輪鋼解理斷裂應力的影響. 工程科學學報, 2016, 38(4): 522 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201604011.htm

    Gong S, Ren X C, Chen G, et al. Effect of microstructure on the cleavage fracture stress of high-speed railway wheel steel. Chin J Eng, 2016, 38(4): 522 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201604011.htm
    [5]
    Chavoshi S Z, Goel S, Luo X C. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J Manuf Processes, 2016, 23: 201 doi: 10.1016/j.jmapro.2016.06.009
    [6]
    姚明秋, 唐彬, 蘇偉. 單晶硅各向異性濕法刻蝕的形貌控制. 光學精密工程, 2016, 24(2): 350 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602014.htm

    Yao M Q, Tang B, Su W. Morphologic control of wet anisotropic silicon etching. Opt Precis Eng, 2016, 24(2): 350 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602014.htm
    [7]
    Lee S H. Analysis of ductile mode and brittle transition of AFM nanomachining of silicon. Int J Mach Tools Manuf, 2012, 61: 71 doi: 10.1016/j.ijmachtools.2012.05.011
    [8]
    Wu H, Melkote S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip. Mater Sci Eng A, 2012, 549: 200 doi: 10.1016/j.msea.2012.04.034
    [9]
    王明海. 單晶硅超精密切削脆塑轉變機理及影響因素的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2006

    Wang M H. Research on Mechanism of Brittle-Ductile Transition and Influencing Factors of Ultra-Precision Turning Single Crystal Silicon[Dissertation]. Harbin: Harbin Institute of Technology, 2006
    [10]
    Uesugi A, Hirai Y, Tsuchiya T, et al. Size effect on brittle-ductile transition temperature of silicon by means of tensile testing//2015 28th IEEE International Conference on Micro Electro Mechanical Systems. Estoril, 2015: 389
    [11]
    王治國, 張鵬, 陳家軒, 等. 單晶硅納米切削中C-C鍵斷裂對金剛石刀具磨損的影響. 物理學報, 2015, 64(19): ArtNo. 198104 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201519044.htm

    Wang Z G, Zhang P, Chen J X, et al. Effect of C-C bond breakage on diamond tool wear in nanometric cutting of silicon. Acta Phys Sin, 2015, 64(19): ArtNo. 198104 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201519044.htm
    [12]
    Fang F Z, Xu F F, Lai M. Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol, 2015, 80(1-4): 591 doi: 10.1007/s00170-015-7032-3
    [13]
    Han X S, Lin B, Yu S Y, et al. Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol, 2002, 129(1-3): 105 doi: 10.1016/S0924-0136(02)00585-X
    [14]
    Liu K, Li X P, Rahman M, et al. A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol, 2007, 32(7): 631 doi: 10.1007/s00170-005-0364-7
    [15]
    Mir A, Luo X C, Sun J N. The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon. Wear, 2016, 364-365: 233 doi: 10.1016/j.wear.2016.08.003
    [16]
    Zhu B, Zhao D, Zhao H W, et al. A study on the surface quality and brittle-ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations. RSC Adv, 2017, 7: 4179 doi: 10.1039/C6RA25426H
    [17]
    Fang F Z, Liu B, Xu Z W. Nanometric cutting in a scanning electron microscope. Precis Eng, 2015, 41: 145 doi: 10.1016/j.precisioneng.2015.01.009
    [18]
    Zhang Z Y, Wu Y Q, Guo D M, et al. Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits. Scripta Mater, 2011, 64(2): 177 doi: 10.1016/j.scriptamat.2010.09.038
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (840) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频