<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
XIAO Fei, ZHANG Zhi-hao, FU Hua-dong. Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel[J]. Chinese Journal of Engineering, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006
Citation: XIAO Fei, ZHANG Zhi-hao, FU Hua-dong. Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel[J]. Chinese Journal of Engineering, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006

Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel

doi: 10.13374/j.issn2095-9389.2019.03.006
More Information
  • Corresponding author: FU Hua-dong, E-mail: huadong.fu@163.com
  • Received Date: 2018-05-29
  • Publish Date: 2019-03-20
  • High-silicon electrical steel is an excellent soft magnetic material with high permeability, low coercive force, and nearzero magnetostriction coefficient. Compared with other preparation methods of high-silicon electrical steel sheet, the rolling method has the advantages of short process and high efficiency. Among the rolling methods, hot rolling is one of the most important part in the formation of high-silicon electrical steel sheet. Therefore, it is very important to study the hot deformation and dynamic recrystallization behaviors of high-silicon electrical steels. In this study, hot deformation and dynamic recrystallization behaviors of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel were studied using a Gleeble-3800D thermal-mechanical simulator with a deformation temperature of 750-1050℃ and strain rate of 0.01-1 s-1. The constitutive equations of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steels were established by linear regression analysis. The thermal deformation activation energies of Fe-5.5% Si, Fe-6.0% Si, and Fe-6.5% Si high-silicon electrical steel are 310.425, 363.831, and 422.162 kJ·mol-1, respectively. It is observed that the thermal deformation activation energies of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel improve with the increase of Si content, which makes the deformation resistance of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel improve with the increase of Si content. Moreover, the dynamic recrystallization percentage was calculated using the intercept method of metallographic examination, and the statistical results show that the dynamic recrystallization percentage of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel decreases with the increase of Si content under the same deformation condition. Meanwhile, at the temperature of 750-850℃, the softening mechanism of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel is mainly dynamic recovery, while at the temperature of 950-1050℃, the softening mechanism is mainly dynamic recrystallization.

     

  • loading
  • [1]
    Xu H J, Xu Y B, Jiao H T, et al. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel. J Magn Magn Mater, 2018, 453: 236 doi: 10.1016/j.jmmm.2018.01.036
    [2]
    Yu J H, Shin J S, Bae J S, et al. The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon steels. Mater Sci Eng A, 2001, 307(1-2): 29 doi: 10.1016/S0921-5093(00)01960-2
    [3]
    Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet. J Magn Magn Mater, 1996, 160: 109 doi: 10.1016/0304-8853(96)00128-X
    [4]
    Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2-3): 135 doi: 10.1016/j.jmmm.2004.04.098
    [5]
    Liang Y F, Lin J P, Ye F, et al. Microstructure and mechanical properties of rapidly quenched Fe-6.5 wt. % Si alloy. J Alloys Compd, 2010, 504(Suppl 1): S476 http://www.sciencedirect.com/science/article/pii/S0925838810005566
    [6]
    Kasama A H, Bolfarini C, Kiminami C S, et al. Magnetic properties evaluation of spray formed and rolled Fe-6.5 wt. % Si-1.0 wt. % Al alloy. Mater Sci Eng A, 2007, 449-451: 375 doi: 10.1016/j.msea.2006.02.318
    [7]
    林均品, 鐘太彬, 林志, 等. Fe3Si基合金板材的制備技術. 北京科技大學學報, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015

    Lin J P, Zhong T B, Lin Z, et al. Fabrication of the sheets for Fe 3 Si based alloy. J Univ Sci Technol Beijing, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015
    [8]
    Ros-Ya?ez T, Houbaert Y, Fischer O, et al. Production of high silicon steel for electrical applications by thermomechanical processing. J Mater Process Technol, 2003, 141(1): 132 doi: 10.1016/S0924-0136(03)00247-4
    [9]
    張兵, 朱樂樂, 王快社, 等. 純鎳的高溫塑性變形行為及本構方程. 稀有金屬, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm

    Zhang B, Zhu L L, Wang K S, et al. High temperature plastic deformation behavior and constitutive equation of pure nickel. Chin J Rare Met, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm
    [10]
    莫遠科, 張志豪, 謝建新, 等. 再結晶退火對高硅電工鋼冷軋帶材組織、有序結構和力學性能的影響. 金屬學報, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm

    Mo Y K, Zhang Z H, Xie J X, et al. Effect of recrystallization on the microstructure, ordering and mechanical properties of coldrolled high silicon electrical steel sheet. Acta Metall Sin, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm
    [11]
    Yang H, Li Z H, Zhang Z L. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi. J Zhejiang Univ SCI A, 2006, 7(8): 1453 doi: 10.1631/jzus.2006.A1453
    [12]
    Mirzadeh H, Najafizadeh A, Moazeney M. Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A, 2009, 40(12): 2950 doi: 10.1007/s11661-009-0029-5
    [13]
    陳禮清, 趙陽, 徐香秋, 等. 一種低碳釩微合金鋼的動態再結晶與析出行為. 金屬學報, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm

    Chen L Q, Zhao Y, Xu X Q, et al. Dynamic recrystallization and precipitation behaviors of a kind of low carbon-microalloyed steel. Acta Metall Sin, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm
    [14]
    Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel. Mater Sci Eng A, 2011, 528(10-11): 3876 doi: 10.1016/j.msea.2011.01.098
    [15]
    魏海蓮, 劉國權. 基于本構分析的中碳釩微合金鋼熱變形行為. 材料科學與工藝, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm

    Wei H L, Liu G Q. Hot deformation behavior of a medium carbon vanadium microalloyed steel based on constitutive analysis. Mater Sci Technol, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm
    [16]
    何霞, 張彥敏, 宋克興, 等. Cu-0.23Be-0.84Co合金熱變形行為. 塑性工程學報, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019

    He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy. J Plast Eng, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019
    [17]
    Sellars C M, McTegart W J. On the mechanism of hot deformation. Acta Metall, 1966, 14(9): 1136 doi: 10.1016/0001-6160(66)90207-0
    [18]
    Shin J S, Bae J S, Kim H J, et al. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys. Mater Sci Eng A, 2005, 407(1-2): 282 doi: 10.1016/j.msea.2005.07.012
    [19]
    Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater, 1996, 44(1): 137 doi: 10.1016/1359-6454(95)00151-0
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1320) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频