<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
TIAN Ya-qiang, TIAN Geng, WANG An-dong, ZHENG Xiao-ping, WEI Ying-li, SONG Jin-ying, CHEN Lian-sheng. Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel[J]. Chinese Journal of Engineering, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005
Citation: TIAN Ya-qiang, TIAN Geng, WANG An-dong, ZHENG Xiao-ping, WEI Ying-li, SONG Jin-ying, CHEN Lian-sheng. Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel[J]. Chinese Journal of Engineering, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005

Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel

doi: 10.13374/j.issn2095-9389.2019.03.005
More Information
  • Corresponding author: CHEN Lian-sheng E-mail: zyzx@ncst.edu.cn
  • Received Date: 2017-07-11
  • Publish Date: 2019-03-20
  • Hot deformation is a way to effectively improve strength and plasticity of multiphase steels simultaneously, thereby, improving mechanical properties of multiphase steels. Hot deformation affects martensitic transformation mechanism, microstructure, and mechanical properties because it increases retained austenite content and improves stability of multiphase steels. Moreover, hot deformation plays a role in dislocation multiplication, and fine grain strengthening; it can reduce bainite transformation driving force, reduce bainite transformation point, and result in small multiphase organization after quenching-partitioning process. The result can significantly improve the properties of materials. The effects of high-temperature deformation on the stability of room-temperature microstructure, mechanical property, and retained austenite under treatment of IQ&PB (intercritical annealing-quenching and partitioning within the bainitic region) and DIQ&PB (intercritical deformation-intercritical annealing-quenching and partitioning within the bainitic region) processes were studied using scanning electron microscopy (SEM), transmission electron microscope (TEM), electron probe X-ray microanalyser (EPMA), X-ray diffraction (XRD), and tensile testing machine. The results show that dislocation density increases from 0.290×1014 to 1.286×1014 m-2 after 15% compression deformation, and the respective concentrations of C and Cu element enrichment in martensite (the original austenite) increases. Overall, dislocation multiplication produced by high-temperature deformation significantly promotes elemental distribution. After the deformation, the size of bainite lath shortenes and its width increases by 0.1 μm, the volume of the bainite transition increased by 14%, and the size of the polygonal ferrite significantly decreases under the DIQ&PB treatment. In terms of mechanical properties, the tensile strength increases by 132.85 MPa, and the elongation increases by 7%; the strength and ductility product reaches 25435 MPa·% after intercritical deformation heat treatment. The volume fraction of retained austenite increases from 7.8% to 8.99%, and the mass fraction of carbon in the retained austenite increases from 1.05% to 1.31% after compression deformation.

     

  • loading
  • [1]
    Li C N, Ji F Q, Yuan G, et al. The impact of thermo-mechanical controlled processing on structure-property relationship and strain hardening behavior in dual-phase steels. Mater Sci Eng A, 2016, 662: 100 doi: 10.1016/j.msea.2016.03.055
    [2]
    Xie P, Han M, Wu C L, et al. A high-performance TRIP steel enhanced by ultrafine grains and hardening precipitates. Mater Des, 2017, 127: 1 doi: 10.1016/j.matdes.2017.04.063
    [3]
    謝振家, 尚成嘉, 周文浩, 等. 低合金多相鋼中殘余奧氏體對塑性和韌性的影響. 金屬學報, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm

    Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel. Acta Metall Sin, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm
    [4]
    戎詠華, 陳乃錄. C同時提高馬氏體鋼強度和塑性的原理和機制. 金屬學報, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm

    Rong Y H, Chen N L. The principle and mechanism of enhancement of both strength and ductility of martensitic steels by carbon. Acta Metall Sin, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm
    [5]
    Sanz L, Pereda B, López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Mater Sci Eng A, 2017, 685: 377 doi: 10.1016/j.msea.2017.01.014
    [6]
    Kong X W, Lan L Y, Hu Z Y, et al. Optimization of mechanical properties of high strength bainitic steel using thermo-mechanical control and accelerated cooling process. J Mater Process Technol, 2015, 217: 202 doi: 10.1016/j.jmatprotec.2014.11.016
    [7]
    Speer J G, Matlock D K. Developments in the quenching and partitioning process. World Iron Steel, 2009, 9(1): 31
    [8]
    李振, 趙愛民, 唐荻, 等. 低碳中錳熱軋TRIP鋼退火工藝及組織演變. 北京科技大學學報, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm

    Li Z, Zhao A M, Tang D, et al. Annealing processing parameters and microstructure evolution of hot-rolled low carbon medium-manganese TRIP steels. J Univ Sci Technol Beijing, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm
    [9]
    陳連生, 張健楊, 田亞強, 等. 預處理組織對低碳鋼IQ&P工藝下組織及性能影響. 工程科學學報, 2016, 38(2): 223

    Chen L S, Zhang J Y, Tian Y Q, et al. Effect of pretreated microstructure on the morphology and mechanical properties of low-carbon steel with IQ&P treatment. Chin J Eng, 2016, 38(2): 223
    [10]
    Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A, 2006, 441(1-2): 1 doi: 10.1016/j.msea.2006.08.095
    [11]
    Rajasekhara S, Ferreira P J, Karjalainen L P, et al. Hall-Petchbehavior in ultra-fine-grained AISI 301LN stainless steel. Metall Mater Trans A, 2007, 38(6): 1202 doi: 10.1007/s11661-007-9143-4
    [12]
    Ma Y Q, Jin J E, Lee Y K. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater, 2005, 52(12): 1311 doi: 10.1016/j.scriptamat.2005.02.018
    [13]
    Liu H P, Jin X J, Dong H, et al. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Mater Charact, 2011, 62(2): 223 doi: 10.1016/j.matchar.2010.12.003
    [14]
    劉和平. 高強塑積熱變形淬火碳分配鋼的研究[學位論文〗. 上海: 上海交通大學, 2011

    Liu H P. Study on High Strength and Elongation Steels Treated by Hot Deformation & QP Process[Dissertation〗. Shanghai: Shanghai Jiao Tong University, 2011
    [15]
    王存宇, 常穎, 楊潔, 等. 熱變形和淬火配分處理的復合作用對低碳合金鋼馬氏體相變機制的影響. 金屬學報, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm

    Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel. Acta Metall Sin, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm
    [16]
    景財年, 王作成. 合金元素在相變誘發塑性鋼中的作用. 材料導報, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012

    Jing C N, Wang Z C. The action of alloy element in transformation-induced plasticity steel. Mater Rev, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012
    [17]
    閆述, 劉相華, 劉偉杰, 等. 含Cu低碳鋼Q&P工藝處理的組織性能與強化機理. 金屬學報, 2013, 49(8): 917

    Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process. Acta Metall Sin, 2013, 49(8): 917
    [18]
    Li Y J, Li X L, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes. Mater Charact, 2016, 121: 157 doi: 10.1016/j.matchar.2016.10.005
    [19]
    Kostka A, Tak K G, Hellmig R J, et al. On the contribution of carbides and micro-grain boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater, 2007, 55(2): 539 doi: 10.1016/j.actamat.2006.08.046
    [20]
    Aghajani A, Eggeler G, Raabe D. Evolution of Microstructure during Long-term Creep of A Tempered Martensite Ferritic Steel[Dissertation〗. Ruhr-University Bochum, Bochum, 2009
    [21]
    夏苑, 楊志剛, 李昭東, 等. 熱變形對Fe-0.2C-2Mn合金γ→α轉變動力學的影響及理論探討. 金屬學報, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm

    Xia Y, Yang Z G, Li Z D, et al. Effect of hot deformation on kinetics of γ→α transformation in a Fe-0.2C-2Mn alloy and related theoretical analyses. Acta Metall Sin, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm
    [22]
    Beladi H, Timokhina I B, Xiong X Y, et al. A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure. Acta Mater, 2013, 61(19): 7240 doi: 10.1016/j.actamat.2013.08.029
    [23]
    Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003
    [24]
    De Knijf D, Petrov R, F?jer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater Sci Eng A, 2014, 615: 107 doi: 10.1016/j.msea.2014.07.054
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (887) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频