Citation: | WANG Dan, WANG Zheng-bang, WANG Jing-feng, LU Xiong-gang, ZHOU Zhong-fu. Fabrication methods and applications of metal-organic framework thin films[J]. Chinese Journal of Engineering, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002 |
[1] |
Li B, Wen H M, Cui Y J, et al. Emerging multifunctional metalorganic framework materials. Adv Mater, 2016, 28(40): 8819 doi: 10.1002/adma.201601133
|
[2] |
Kaneti Y V, Dutta S, Hossain M S A, et al. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater, 2017, 29(38): ArtNo. 1700213-1 doi: 10.1002/adma.201700213
|
[3] |
Loiseau T, Volkringer C, Haouas M, et al. Crystal chemistry of aluminium carboxylates: from molecular species towards porous infinite three-dimensional networks. C R Chim, 2015, 18(12): 1350 doi: 10.1016/j.crci.2015.08.006
|
[4] |
付靜茹. MOF膜和COF膜以及COF/MOF復合膜的制備以及氣體分離性質的研究[學位論文]. 長春: 吉林大學, 2016
Fu J R. Fabrication and Gas Separation Properties of MOF Membrane and COF Membrane and the COF/MOF Composite Membrane.[Dissertation]. Changchun: Jilin University, 2016
|
[5] |
Li Y S, Yang W S. Molecular sieve membranes: from 3D zeolites to 2D MOFs. Chin J Catal, 2015, 36(5): 692 doi: 10.1016/S1872-2067(15)60838-5
|
[6] |
Andres M A, Benzaqui M, Serre C, et al. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. J Colloid Interface Sci, 2018, 519: 88 doi: 10.1016/j.jcis.2018.02.058
|
[7] |
Zhang J, Xia T F, Zhao D, et al. In situ secondary growth of Eu (Ⅲ)-organic framework film for fluorescence sensing of sulfur dioxide. Sens Actuators B, 2018, 260: 63 doi: 10.1016/j.snb.2017.12.187
|
[8] |
Rubio-Gimenez V, Galbiati M, Castells-Gil J, et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv Mater, 2018, 30(10): 1704291 doi: 10.1002/adma.201704291
|
[9] |
Shete M, Kumar P, Bachman J E, et al. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. J Membr Sci, 2018, 549: 312 doi: 10.1016/j.memsci.2017.12.002
|
[10] |
Bétard A, Fischer R A. Metal-organic framework thin films: from fundamentals to applications. Chem Rev, 2012, 112(2): 1055 doi: 10.1021/cr200167v
|
[11] |
Sakaida S, Otsubo K, Sakata O, et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat Chem, 2016, 8(4): 377 doi: 10.1038/nchem.2469
|
[12] |
Edler K J, Yang B. Formation of mesostructured thin films at the air-liquid interface. Chem Soc Rev, 2013, 42(9): 3765 doi: 10.1039/C2CS35300H
|
[13] |
Genesio G, Maynadie J, Carboni M, et al. Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO). New J Chem, 2018, 42(4): 2351 doi: 10.1039/C7NJ03171H
|
[14] |
He Y R, Tang Y P, Ma D C, et al. UiO-66 incorporated thinfilm nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci, 2017, 541: 262 doi: 10.1016/j.memsci.2017.06.061
|
[15] |
Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces, 2016, 8(31): 20459 doi: 10.1021/acsami.6b04701
|
[16] |
Chen Y F, Li S Q, Pei X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew Chem Int Ed, 2016, 55(10): 3419 doi: 10.1002/anie.201511063
|
[17] |
Li W J, Gao S Y, Liu T F, et al. In situ growth of metal-organic framework thin films with gas sensing and molecule storage properties. Langmuir, 2013, 29(27): 8657 doi: 10.1021/la402012d
|
[18] |
Shekhah O, Fu L L, Sougrat R, et al. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: mesoporous silica foam as a first case study. Chem Commun, 2012, 48(93): 11434 doi: 10.1039/c2cc36233c
|
[19] |
Sun Y X, Yang F, Wei Q, et al. Oriented nano-microstructureassisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater, 2016, 28(12): 2374 doi: 10.1002/adma.201505437
|
[20] |
Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
|
[21] |
Bao T, Zhang J, Zhang W P, et al. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A, 2015, 1381: 239 doi: 10.1016/j.chroma.2015.01.005
|
[22] |
Dou Z S, Cai J F, Cui Y J, et al. Preparation and gas separation properties of metal organic framework membranes. Z Anorg Allg Chem, 2015, 641(5): 792 doi: 10.1002/zaac.201400574
|
[23] |
Hromadka J, Tokay B, Correia R, et al. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sens Actuators B, 2018, 260: 685 doi: 10.1016/j.snb.2018.01.015
|
[24] |
Toyao T, Styles M J, Yago T, et al. Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19(29): 4201 doi: 10.1039/C7CE00390K
|
[25] |
Lee D T, Zhao J J, Oldham C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl Mater Interfaces, 2017, 9(51): 44847 doi: 10.1021/acsami.7b15397
|
[26] |
秦茜, 孫玉繡, 王乃鑫, 等. 表面修飾在MOF薄膜制備中的應用. 化工進展, 2017, 36(4): 1306 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201704021.htm
Qin X, Sun Y X, Wang N X, et al. Surface modifications for preparation of MOF thin films. Chem Ind Eng Prog, 2017, 36(4): 1306 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201704021.htm
|
[27] |
Janghouri M, Hosseini H. Water-soluble metal-organic framework hybrid electron injection layer for organic light-emitting devices. J Inorg Organomet Polym Mater, 2017, 27(6): 1800 doi: 10.1007/s10904-017-0644-3
|
[28] |
Hou J W, Sutrisna P D, Zhang Y T, et al. Formation of ultrathin, continuous metal-organic framework membranes on flexible polymer substrates. Angew Chem Int Ed, 2016, 55(12): 3947 doi: 10.1002/anie.201511340
|
[29] |
Wang N Y, Liu Y, Qiao Z W, et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J Mater Chem A, 2015, 3(8): 4722 doi: 10.1039/C4TA06763K
|
[30] |
Liu J X, Shekhah O, Stammer X, et al. Deposition of metal-organic frameworks by liquid-phase epitaxy: the influence of substrate functional group density on film orientation. Materials, 2012, 5(9): 1581 doi: 10.3390/ma5091581
|
[31] |
Virmani E, Rotter J M, Mahringer A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. J Am Chem Soc, 2018, 140(14): 4812 doi: 10.1021/jacs.7b08174
|
[32] |
Zhuang J L, Terfort A, W?ll C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: a review. Coord Chem Rev, 2016, 307: 391 doi: 10.1016/j.ccr.2015.09.013
|
[33] |
Guo Y, Mao Y Y, Hu P, et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature. Chemistry Select, 2016, 1(1): 108 doi: 10.1002/slct.201500010
|
[34] |
Liu Y, Pan J H, Wang N Y, et al. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew Chem Int Ed, 2015, 127(10): 3071 doi: 10.1002/ange.201411550
|
[35] |
Brower L J, Gentry L K, Napier A L, et al. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth. Beilstein J Nanotechnol, 2017, 8: 2307 doi: 10.3762/bjnano.8.230
|
[36] |
Ismail F M, Abdellah A M, Ali P A, et al. Bilayer sandwichlike membranes of metal organic frameworks-electrospun polymeric nanofibers via SiO 2 nanoparticles seeding. Mater Today Commun, 2017, 12: 119 doi: 10.1016/j.mtcomm.2017.08.001
|
[37] |
Liu J X, W?ll C. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46(19): 5730 doi: 10.1039/C7CS00315C
|
[38] |
Horiuchi Y, Toyao T, Miyahara K, et al. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem Commun, 2016, 52(29): 5190 doi: 10.1039/C6CC00730A
|
[39] |
Fan L L, Xue M, Kang Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem, 2012, 22(48): 25272 doi: 10.1039/c2jm35401b
|
[40] |
Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks. J Am Chem Soc, 2007, 129(49): 15118 doi: 10.1021/ja076210u
|
[41] |
Hurrle S, Friebe S, Wohlgemuth J, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness. Chem Eur J, 2017, 23(10): 2294 doi: 10.1002/chem.201606056
|
[42] |
Gliemann H, W?ll C. Epitaxially grown metal-organic frameworks. Mater Today, 2012, 15(3): 110 doi: 10.1016/S1369-7021(12)70046-9
|
[43] |
Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat Chem, 2011, 3(5): 382 doi: 10.1038/nchem.1026
|
[44] |
Makiura R, Konovalov O. Interfacial growth of large-area singlelayer metal-organic framework nanosheets. Sci Rep, 2013, 3: ArtNo. 2506-1 doi: 10.1038/srep02506
|
[45] |
Gu P, Qian L N, Yan Z D, et al. Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonalclose-packed dielectric microspheres. Opt Commun, 2018, 419: 103 doi: 10.1016/j.optcom.2018.03.016
|
[46] |
Otsubo K, Kitagawa H. Metal-organic framework thin films with well-controlled growth directions confirmed by x-ray study. APL Mater, 2014, 2(12): 124105 doi: 10.1063/1.4899295
|
[47] |
Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nat Mater, 2010, 9(7): 565 doi: 10.1038/nmat2769
|
[48] |
Wang Y X, Zhao M T, Ping J F, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater, 2016, 28(21): 4149 doi: 10.1002/adma.201600108
|
[49] |
Zhao Y B, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J Am Chem Soc, 2015, 137(6): 2199 doi: 10.1021/ja512951e
|
[50] |
Müller U, Puetter H, Hesse M, et al. Method for Electrochemical Production of A Crystalline Porous Metal Organic Skeleton Material: US Patent, 7968739B2.2011-6-28
|
[51] |
Li W J, Liu J, Sun Z H, et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun, 2016, 7: 11830 doi: 10.1038/ncomms11830
|
[52] |
Feng J F, Yang X, Gao S Y, et al. Facile and rapid growth of nanostructured Ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr3+ detection in solution. Langmuir, 2017, 33(50): 14238 doi: 10.1021/acs.langmuir.7b03170
|
[53] |
Li M Y, Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks. J Am Chem Soc, 2011, 133(33): 12926 doi: 10.1021/ja2041546
|
[54] |
Stassen I, Styles M, Grenci G, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater, 2016, 15(3): 304 doi: 10.1038/nmat4509
|
[55] |
Ahvenniemi E, Karppinen M. In situ atomic/molecular layer-bylayer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chem Mater, 2016, 28(17): 6260 doi: 10.1021/acs.chemmater.6b02496
|
[56] |
Lemaire P C, Zhao J J, Williams P S, et al. Copper benzenetricarboxylate metal-organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition. ACS Appl Mater Interfaces, 2016, 8(14): 9514 doi: 10.1021/acsami.6b01195
|
[57] |
Delen G, Ristanovi? Z, Mandemaker L D B, et al. Mechanistic insights into growth of surface-mounted metal-organic framework films resolved by infrared (nano-) spectroscopy. Chem Eur J, 2018, 24(1): 187 doi: 10.1002/chem.201704190
|
[58] |
Worrall S D, Bissett M A, Hill P I, et al. Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochim Acta, 2016, 222: 361 doi: 10.1016/j.electacta.2016.10.187
|
[59] |
Liu J X, Redel E, Walheim S, et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater, 2015, 27(6): 1991 doi: 10.1021/cm503908g
|
[60] |
Otsubo K, Haraguchi T, Sakata O, et al. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. J Am Chem Soc, 2012, 134(23): 9605 doi: 10.1021/ja304361v
|
[61] |
Haraguchi T, Otsubo K, Sakata O, et al. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metalorganic framework thin films. Inorg Chem, 2015, 54(24): 11593 doi: 10.1021/acs.inorgchem.5b02207
|
[62] |
Zhu Y H, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater, 2017, 16(5): 532 doi: 10.1038/nmat4852
|
[63] |
Cliffe M J, Wan W, Zou X D, et al. Correlated defect nanoregions in a metal-organic framework. Nat Commun, 2014, 5: 4176 doi: 10.1038/ncomms5176
|
[64] |
Kozachuk O, Meilikhov M, Yusenko K, et al. A solid-solution approach to mixed-metal metal-organic frameworks-detailed characterization of local structures, defects and breathing behaviour of Al/V frameworks. Eur J Inorg Chem, 2013, 2013(26): 4546 doi: 10.1002/ejic.201300591
|
[65] |
St Petkov P, Vayssilov G N, Liu J X, et al. Defects in MOFs: a thorough characterization. Chem Phys Chem, 2012, 13(8): 2025 doi: 10.1002/cphc.201200222
|
[66] |
Bennett T D, Todorova T K, Baxter E F, et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study. Phys Chem Chem Phys, 2016, 18(3): 2192 doi: 10.1039/C5CP06798G
|
[67] |
Feyand M, Mugnaioli E, Vermoortele F, et al. Automated diffraction tomography for the structure elucidation of twinned, submicrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew Chem Int Ed, 2012, 124(41): 10519 doi: 10.1002/ange.201204963
|
[68] |
Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135(31): 11465 doi: 10.1021/ja405078u
|
[69] |
Adatoz E, Avci A K, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol, 2015, 152: 207 doi: 10.1016/j.seppur.2015.08.020
|
[70] |
Huang K, Liu S N, Li Q Q, et al. Preparation of novel metalcarboxylate system MOF membrane for gas separation. Sep Purif Technol, 2013, 119: 94 doi: 10.1016/j.seppur.2013.09.008
|
[71] |
Hu Y X, Dong X L, Nan J P, et al. Metal-organic framework membranes fabricated via reactive seeding. Chem Commun, 2011, 47(2): 737 doi: 10.1039/C0CC03927F
|
[72] |
Münch A S, Seidel J, Obst A, et al. High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem Eur J, 2011, 17(39): 10958 doi: 10.1002/chem.201100642
|
[73] |
Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcaniz J, et al. MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts. Appl Catal A, 2011, 391(1-2): 261 doi: 10.1016/j.apcata.2010.05.019
|
[74] |
Zhang T Y, Liu W X, Meng G, et al. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. Chem Cat Chem, 2017, 9(10): 1771 doi: 10.1002/cctc.201700060
|
[75] |
Maina J W, Schutz J A, Grundy L, et al. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl Mater Interfaces, 2017, 9(40): 35010 doi: 10.1021/acsami.7b11150
|
[76] |
Lin S Y, Pineda-Galvan Y, Maza W A, et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. Chem Sus Chem, 2017, 10(3): 514 doi: 10.1002/cssc.201601181
|
[77] |
Gong Y N, Ouyang T, He C T, et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework. Chem Sci, 2016, 7(2): 1070 doi: 10.1039/C5SC02679B
|
[78] |
Usov P M, Ahrenholtz S R, Maza W A, et al. Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film. J Mater Chem A, 2016, 4(43): 16818 doi: 10.1039/C6TA05877A
|
[79] |
Johnson B A, Bhunia A, Ott S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Trans, 2017, 46(5): 1382 doi: 10.1039/C6DT03718F
|
[80] |
Vaddipalli S R, Sanivarapu S R, Vengatesan S, et al. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: Stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces, 2016, 8(35): 23049 doi: 10.1021/acsami.6b06851
|
[81] |
Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1: 16184 doi: 10.1038/nenergy.2016.184
|
[82] |
范黎黎. 沸石分子篩膜和金屬-有機骨架膜的制備和應用[學位論文]. 長春: 吉林大學, 2014
Fan L L. Preparation and Application of Zeolite and Metal-Organic Framework Membranes[Dissertation]. Changchun: Jilin University, 2014
|
[83] |
Ye L, Liu J X, Gao Y, et al. Highly oriented MOF thin filmbased electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J Mater Chem A, 2016, 4(40): 15320 doi: 10.1039/C6TA04801C
|
[84] |
Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc, 2015, 137(44): 14129 doi: 10.1021/jacs.5b08212
|
[85] |
Allendorf M D, Houk R J, Andruszkiewicz L, et al. Stress-induced chemical detection using flexible metal-organic frameworks. J Am Chem Soc, 2008, 130(44): 14404 doi: 10.1021/ja805235k
|
[86] |
Hromadka J, Tokay B, Correia R, et al. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens Actuators B, 2018, 255: 2483 doi: 10.1016/j.snb.2017.09.041
|
[87] |
Shu Y, Yan Y, Chen J Y, et al. Ni and NiO nanoparticles decorated metal-organic framework nanosheets: Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces, 2017, 9(27): 22342 doi: 10.1021/acsami.7b07501
|
[88] |
Liu J, Sun F X, Zhang F, et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem, 2011, 21(11): 3775 doi: 10.1039/c0jm03123b
|
[89] |
Aubrey M L, Long J R. A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J Am Chem Soc, 2015, 137(42): 13594 doi: 10.1021/jacs.5b08022
|
[90] |
Jiao Y, Pei J, Yan C S, et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater Chem A, 2016, 4(34): 13344 doi: 10.1039/C6TA05384J
|
[91] |
Li B, Liu J, Nie Z M, et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries. Nano Lett, 2016, 16(7): 4335 doi: 10.1021/acs.nanolett.6b01426
|
[92] |
Lee D Y, Kim E K, Shin C Y, et al. Layer-by-layer deposition and photovoltaic property of Ru-based metal-organic frameworks. RSC Adv, 2014, 4(23): 12037 doi: 10.1039/c4ra00397g
|
[93] |
Lopez H A, Dhakshinamoorthy A, Ferrer B, et al. Photochemical response of commercial MOFs: Al2(BDC)3 and its use as active material in photovoltaic devices. J Phys Chem C, 2011, 115(45): 22200 doi: 10.1021/jp206919m
|
[94] |
Chi W S, Roh D K, Lee C S, et al. A shape-and morphologycontrolled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J Mater Chem A, 2015, 3(43): 21599 doi: 10.1039/C5TA06731F
|
[95] |
Liu J X, Zhou W C, Liu J X, et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. J Mater Chem A, 2016, 4(33): 12739 doi: 10.1039/C6TA04898F
|
[96] |
Deng H X, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084): 1018 doi: 10.1126/science.1220131
|
[97] |
Park H J, So M C, Gosztola D, et al. Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl Mater Interfaces, 2016, 8(38): 24983 doi: 10.1021/acsami.6b03307
|
[98] |
Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16(2): 220 doi: 10.1038/nmat4766
|
[99] |
Zhang M, Ma L, Wang L L, et al. Insights into the use of metalorganic framework as high-performance anticorrosion coatings. ACS Appl Mater Interfaces, 2018, 10(3): 2259 doi: 10.1021/acsami.7b18713
|
[100] |
Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 2013: 1246738 http://smartsearch.nstl.gov.cn/paper_detail.html?id=dfa1ad916706aed7fe1d8d58485e2667
|
[101] |
Erickson K J, Leonard F, Stavila V, et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv Mater, 2015, 27(22): 3453 doi: 10.1002/adma.201501078
|
[102] |
Jain P, Stroppa A, Nabok D, et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework. Npj Quantum Mater, 2016, 1(1): 16012 doi: 10.1038/npjquantmats.2016.12
|
[103] |
Wang Z B, Nminibapiel D, Shrestha P, et al. Resistive switching nanodevices based on metal-organic frameworks. Chem Nano Mat, 2016, 2(1): 67 doi: 10.1002/cnma.201500143
|
[104] |
Gu Z G, Chen S C, Fu W Q, et al. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors. ACS Appl Mater Interfaces, 2017, 9(8): 7259 doi: 10.1021/acsami.6b14541
|
[105] |
Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed, 2009, 48(27): 5038 doi: 10.1002/anie.200900378
|
[106] |
Xu G, Yamada T, Otsubo K, et al. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc, 2012, 134(40): 16524 doi: 10.1021/ja307953m
|
[107] |
Ohnsorg M L, Beaudoin C K, Anderson M E. Fundamentals of MOF thin film growth via liquid-phase epitaxy: investigating the initiation of deposition and the influence of temperature. Langmuir, 2015, 31(22): 6114 doi: 10.1021/acs.langmuir.5b01333
|
[108] |
Yu X J, Zhuang J L, Scherr J, et al. Minimization of surface energies and ripening outcompete template effects in the surface growth of metal-organic frameworks. Angew Chem Int Ed, 2016, 55(29): 8348 doi: 10.1002/anie.201602907
|
[109] |
Hod I, Sampson M D, Deria P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal, 2015, 5(11): 6302 doi: 10.1021/acscatal.5b01767
|
[110] |
Dragasser A, Shekhah O, Zybaylo O, et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. Chem Commun, 2012, 48(5): 663 doi: 10.1039/C1CC16580A
|
[111] |
Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705 doi: 10.1038/nature01650
|