Citation: | KANG Zhuo, WU Hua-lin, SI Hao-nan, ZHANG Yue. Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors: progress and challenges[J]. Chinese Journal of Engineering, 2019, 41(3): 279-291. doi: 10.13374/j.issn2095-9389.2019.03.001 |
[1] |
Weber D. CH3 NH3 PbX3, ein Pb(Ⅱ)-system mit kubischer perowskitstruktur/CH3 NH3 PbX3, a Pb(Ⅱ)-system with cubic perovskite structure. Z Naturforsch B Chem Sci, 1978, 33(12): 1443 doi: 10.1515/znb-1978-1214
|
[2] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
|
[3] |
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
|
[4] |
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269): 151 doi: 10.1126/science.aad5845
|
[5] |
Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655
|
[6] |
Correa-Baena J P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739 doi: 10.1126/science.aam6323
|
[7] |
Stolterfoht M, Wolff C M, Márquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat Energy, 2018, 3(10): 847 doi: 10.1038/s41560-018-0219-8
|
[8] |
Jiang Y Z, Yuan J, Ni Y X, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356 doi: 10.1016/j.joule.2018.05.004
|
[9] |
Jeon N J, Na H, Jung E H, et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3(8): 682 doi: 10.1038/s41560-018-0200-6
|
[10] |
Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550(7674): 92 doi: 10.1038/nature23877
|
[11] |
Li X, Bi D Q, Yi C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58 doi: 10.1126/science.aaf8060
|
[12] |
Huang J S, Yuan Y B, Shao Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2(7): 17042 doi: 10.1038/natrevmats.2017.42
|
[13] |
Brenner T M, Egger D A, Kronik L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1(1): 15007 doi: 10.1038/natrevmats.2015.7
|
[14] |
Green M A, Jiang Y J, Soufiani A M, et al. Optical properties of photovoltaic organic-inorganic lead halide perovskites. J Phys Chem Lett, 2015, 6(23): 4774 doi: 10.1021/acs.jpclett.5b01865
|
[15] |
Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175μm in solution grown CH3 NH3 PbI3 single crystals. Science, 2015, 347(6225): 967 doi: 10.1126/science.aaa5760
|
[16] |
Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3 NH3 PbI3. Science, 2013, 342(6156): 344 doi: 10.1126/science.1243167
|
[17] |
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9(9): 687 doi: 10.1038/nnano.2014.149
|
[18] |
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15(6): 3692 doi: 10.1021/nl5048779
|
[19] |
Xiao M D, Huang F Z, Huang W C, et al. A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53(37): 9898 doi: 10.1002/anie.201405334
|
[20] |
Im J H, Jang I H, Pellet N, et al. Growth of CH3 NH3 PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014, 9(11): 927 doi: 10.1038/nnano.2014.181
|
[21] |
Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (Ⅱ) iodide. J Am Chem Soc, 2015, 137(27): 8696 doi: 10.1021/jacs.5b04930
|
[22] |
Kim Y H, Cho H, Lee T W. Metal halide perovskite light emitters. Proc Nat Acad Sci USA, 2016, 113(42): 11694 doi: 10.1073/pnas.1607471113
|
[23] |
Yuan M J, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11(10): 872 doi: 10.1038/nnano.2016.110
|
[24] |
Dou L T, Yang Y M, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404 doi: 10.1038/ncomms6404
|
[25] |
Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13(5): 476 doi: 10.1038/nmat3911
|
[26] |
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9(7): 444 doi: 10.1038/nphoton.2015.82
|
[27] |
Gu C W, Lee J S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10(5): 5413 doi: 10.1021/acsnano.6b01643
|
[28] |
Li F, Ma C, Wang H, et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun, 2015, 6: 8238 doi: 10.1038/ncomms9238
|
[29] |
Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364): 745 doi: 10.1126/science.aam7093
|
[30] |
Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev, 2019, 48: 310 doi: 10.1039/C8CS00740C
|
[31] |
Feng J G, Gong C, Gao H F, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat Electron, 2018, 1(7): 404 doi: 10.1038/s41928-018-0101-5
|
[32] |
Qi X, Zhang Y P, Ou Q D, et al. Photonics and optoelectronics of 2D metal-halide perovskites. Small, 2018, 14(31): 1800682 doi: 10.1002/smll.201800682
|
[33] |
Hong K, Le Q V, Kim S Y, et al. Low-dimensional halide perovskites: review and issues. J Mater Chem C, 2018, 6(9): 2189 doi: 10.1039/C7TC05658C
|
[34] |
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519 doi: 10.1126/science.aaa2725
|
[35] |
Huang H, Polavarapu L, Sichert J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater, 2016, 8(11): e328 doi: 10.1038/am.2016.167
|
[36] |
Xu X Z, Zhang X J, Deng W, et al. 1D organic-inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340 doi: 10.1002/smtd.201700340
|
[37] |
Shao Y C, Fang Y J, Li T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ Sci, 2016, 9(5): 1752 doi: 10.1039/C6EE00413J
|
[38] |
Xiao Z G, Yuan Y B, Shao Y C, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2015, 14(2): 193 doi: 10.1038/nmat4150
|
[39] |
Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8(7): 2118 doi: 10.1039/C5EE01265A
|
[40] |
Yuan Y B, Li T, Wang Q, et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci Adv, 2017, 3(3): e1602164 doi: 10.1126/sciadv.1602164
|
[41] |
Sun S B, Yuan D, Xu Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648 doi: 10.1021/acsnano.5b08193
|
[42] |
Schmidt L C, Pertegas A, Gonzalez-Carrero S, et al. Nontemplate synthesis of CH3 NH3 PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136(3): 850 doi: 10.1021/ja4109209
|
[43] |
Zhang F, Zhong H Z, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3 NH3 PbX3(X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533 doi: 10.1021/acsnano.5b01154
|
[44] |
Dirin D N, Protesescu L, Trummer D, et al. Harnessing defecttolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett, 2016, 16(9): 5866 doi: 10.1021/acs.nanolett.6b02688
|
[45] |
Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX 3). Adv Mater, 2015, 27(44): 7162 doi: 10.1002/adma.201502567
|
[46] |
Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249 doi: 10.1038/s41586-018-0576-2
|
[47] |
Xiao Z G, Kerner R A, Zhao L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics, 2017, 11(2): 108 doi: 10.1038/nphoton.2016.269
|
[48] |
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12(11): 681 doi: 10.1038/s41566-018-0260-y
|
[49] |
Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and lowthreshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16(1): 448 doi: 10.1021/acs.nanolett.5b04110
|
[50] |
Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 2015, 6: 8056 doi: 10.1038/ncomms9056
|
[51] |
Dong Y H, Gu Y, Zou Y S, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622 doi: 10.1002/smll.201602366
|
[52] |
Li X M, Yu D J, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015 doi: 10.1021/acsnano.6b08194
|
[53] |
Zheng Z, Zhuge F W, Wang Y G, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater, 2017, 27(43): 1703115 doi: 10.1002/adfm.201703115
|
[54] |
Lu J W, Sheng X X, Tong G Q, et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Adv Mater, 2017, 29(23): 1700400 doi: 10.1002/adma.201700400
|
[55] |
Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1): 4
|
[56] |
Kang D H, Pae S R, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28(35): 7799 doi: 10.1002/adma.201600992
|
[57] |
Li F, Wang H, Kufer D, et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv Mater, 2017, 29(16): 1602432 doi: 10.1002/adma.201602432
|
[58] |
Huo C X, Liu X H, Wang Z M, et al. High-performance lowvoltage-driven phototransistors through CsPbBr3-2D crystal van der Waals heterojunctions. Adv Opt Mater, 2018, 6(16): 1800152 doi: 10.1002/adom.201800152
|
[59] |
Song X F, Liu X H, Yu D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mat Interfaces, 2018, 10(3): 2801 doi: 10.1021/acsami.7b14745
|
[60] |
Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1): 176 doi: 10.1002/adma.201402471
|
[61] |
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316 doi: 10.1038/nature12340
|
[62] |
Kufer D, Konstantatos G. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics, 2016, 3(12): 2197 doi: 10.1021/acsphotonics.6b00391
|
[63] |
Hu C, Dong D D, Yang X K, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater, 2017, 27(2): 1603605 doi: 10.1002/adfm.201603605
|
[64] |
Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett, 2015, 15(12): 7853 doi: 10.1021/acs.nanolett.5b02523
|
[65] |
Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27(27): 1701011 doi: 10.1002/adfm.201701011
|
[66] |
Bjorkman T, Gulans A, Krasheninnikov A V, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys Rev Lett, 2012, 108(23): 235502 doi: 10.1103/PhysRevLett.108.235502
|
[67] |
Xia W S, Dai L P, Yu P, et al. Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9(13): 4324 doi: 10.1039/C7NR00844A
|
[68] |
Geim A K, Grigorieva I V. van der Waals heterostructures. Nature, 2013, 499(7459): 419 doi: 10.1038/nature12385
|
[69] |
Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16(2): 170 doi: 10.1038/nmat4703
|
[70] |
Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439 doi: 10.1126/science.aac9439
|
[71] |
Wu H L, Kang Z, Zhang Z H, et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS20D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater, 2018, 28(34): 1802015 doi: 10.1002/adfm.201802015
|
[72] |
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222 doi: 10.1126/science.aad1818
|
[73] |
Son D Y, Lee J W, Choi Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3 NH3 PbI3 perovskite solar cells. Nat Energy, 2016, 1(7): 16081 doi: 10.1038/nenergy.2016.81
|
[74] |
Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12(3): 207 doi: 10.1038/nmat3505
|
[75] |
Kozawa D, Carvalho A, Verzhbitskiy I, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett, 2016, 16(7): 4087 doi: 10.1021/acs.nanolett.6b00801
|
[76] |
Boulesbaa A, Wang K, Mahjouri-Samani M, et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc, 2016, 138(44): 14713 doi: 10.1021/jacs.6b08883
|
[77] |
Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69): 65252 doi: 10.1039/C6RA08699C
|
[78] |
Wu H L, Si H N, Zhang Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci, 2018, 5(12): 1801219 doi: 10.1002/advs.201801219
|
[79] |
Kim H S, Seo J Y, Park N G. Material and device stability in perovskite solar cells. ChemSusChem, 2016, 9(18): 2528 doi: 10.1002/cssc.201600915
|
[80] |
Wang Q, Chen B, Liu Y, et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ Sci, 2017, 10(2): 516 doi: 10.1039/C6EE02941H
|
[81] |
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8(7): 506 doi: 10.1038/nphoton.2014.134
|
[82] |
Nazarenko O, Yakunin S, Morad V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater, 2017(4): e373 http://www.nature.com/articles/am201745
|
[83] |
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413): 449 doi: 10.1126/science.aat3583
|
[84] |
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740
|
[85] |
Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555(7697): 497 doi: 10.1038/nature25989
|
[86] |
Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A J, et al. Potassium-and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett, 2018, 3(11): 2671 doi: 10.1021/acsenergylett.8b01504
|
[87] |
Jiang Q L, Chen M M, Li J Q, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017, 11(1): 1073 doi: 10.1021/acsnano.6b08004
|
[88] |
Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett, 2018, 3(4): 970 doi: 10.1021/acsenergylett.8b00270
|
[89] |
Liu M, Zhong G H, Yin Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci, 2017, 4(11): 1700335 doi: 10.1002/advs.201700335
|
[90] |
Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3(X=Cl, Br, I) perovskites?. ACS Energy Lett, 2018, 3(2): 286 doi: 10.1021/acsenergylett.7b01197
|
[91] |
Kamat P V, Bisquert J, Buriak J. Lead-free perovskite solar cells. ACS Energy Lett, 2017, 2(4): 904 doi: 10.1021/acsenergylett.7b00246
|
[92] |
Jellicoe T C, Richter J M, Glass H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc, 2016, 138(9): 2941 doi: 10.1021/jacs.5b13470
|
[93] |
Yang B, Chen J S, Hong F, et al. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew Chem Int Ed, 2017, 129(41): 12645 doi: 10.1002/ange.201704739
|
[94] |
Dai J F, Xi J, Li L, et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew Chem Int Ed, 2018, 57(20): 5754 doi: 10.1002/anie.201801780
|
[95] |
Wang R L, Shang Y Q, Kanjanaboos P, et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci, 2016, 9(4): 1130 doi: 10.1039/C5EE03887A
|
[96] |
Suh Y H, Kim T, Choi J W, et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 2018, 1(2): 488 doi: 10.1021/acsanm.7b00212
|
[97] |
Pan J, Quan L N, Zhao Y B, et al. Highly efficient perovskitequantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28(39): 8718 doi: 10.1002/adma.201600784
|
[98] |
Li J H, Xu L M, Wang T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29(5): 1603885 doi: 10.1002/adma.201603885
|