Citation: | ZHENG Jian-chao, PAN Chao, ZHANG Jian-tao, FU Shao-peng, LIN Ping, HU Xiao-jun. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205[J]. Chinese Journal of Engineering, 2019, 41(2): 246-253. doi: 10.13374/j.issn2095-9389.2019.02.012 |
[1] |
Garfias-Mesias L F, Sykes J M, Tuck C D S. The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corros Sci, 1996, 38(8): 1319 doi: 10.1016/0010-938X(96)00022-4
|
[2] |
Momeni A, Kazemi S, Bahrani A. Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining. Int J Miner Metall Mater, 2013, 20(10): 953 doi: 10.1007/s12613-013-0820-6
|
[3] |
Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy. Int J Miner Metall Mater, 2011, 18(1): 42 doi: 10.1007/s12613-011-0397-x
|
[4] |
Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3): 969 doi: 10.1016/j.corsci.2009.11.020
|
[5] |
Olsson J, Snis M. Duplex-A new generation of stainless steels for desalination plants. Desalination, 2007, 205(1-3): 104 doi: 10.1016/j.desal.2006.02.051
|
[6] |
吳玖. 雙相不銹鋼. 北京: 冶金工業出版社, 2000
Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 2000
|
[7] |
Yang S M, Chen Y C, Chen C H, et al. Microstructural characterization of δ/γ/σ/γ2/χ phases in silver-doped 2205 duplex stainless steel under 800℃ aging. J Alloys Compd, 2015, 633: 48 doi: 10.1016/j.jallcom.2015.01.165
|
[8] |
Pohl M, Storz O, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater Charact, 2007, 58(1): 65. doi: 10.1016/j.matchar.2006.03.015
|
[9] |
Merello R, Botana F J, Botalla J, et al. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels. Corros Sci, 2003, 45(5): 909 doi: 10.1016/S0010-938X(02)00154-3
|
[10] |
Westin E M, Olsson C O A, Hertzman S. Weld oxide formation on lean duplex stainless steel. Corros Sci, 2008, 50(9): 2620 doi: 10.1016/j.corsci.2008.06.024
|
[11] |
蘇煜森, 楊銀輝, 曹建春, 等. 節Ni型2101雙相不銹鋼的高溫熱加工行為研究. 金屬學報, 2018, 54(4): 485 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201804001.htm
Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101. Acta Metall Sin, 2018, 54(4): 485 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201804001.htm
|
[12] |
方軼琉, 劉振宇, 張維娜, 等. 節約型雙相不銹鋼2101高溫變形過程中微觀組織演化. 金屬學報, 2010, 46(6): 641 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201006002.htm
Fang Y L, Liu Z Y, Zhang W N, et al. Microstructure evolution of lean duplex stainless steel 2101 during hot deformation. Acta Metall Sin, 2010, 46(6): 641 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201006002.htm
|
[13] |
Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Mater, 2008, 59(9): 963 doi: 10.1016/j.scriptamat.2008.06.050
|
[14] |
Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall Mater Trans A, 2012, 43(1): 37 doi: 10.1007/s11661-011-0828-3
|
[15] |
Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int, 1991, 31(9): 992 doi: 10.2355/isijinternational.31.992
|
[16] |
An L C, Cao J, Wu L C, et al. Effects of Mo and Mn on pitting behavior of duplex stainless steel. J Iron Steel Res Int, 2016, 23(12): 1333 doi: 10.1016/S1006-706X(16)30196-0
|
[17] |
Toor I, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components. Corros Sci, 2008, 50(2): 404 doi: 10.1016/j.corsci.2007.07.004
|
[18] |
Li J, Xu Y L, Xiao X S, et al. A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr-2Ni-3Mo-xMn-N. Mater Sci Eng A, 2009, 527(1-2): 245 doi: 10.1016/j.msea.2009.07.065
|
[19] |
Diederichs R, Bleck W. Modelling of manganese sulphide formation during solidification, part I: description of MnS formation parameters. Steel Res Int, 2006, 77(3): 202 doi: 10.1002/srin.200606375
|
[20] |
Oikawa K, Ishida K, Nishizawa T. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int, 1997, 37(4): 332 doi: 10.2355/isijinternational.37.332
|
[21] |
邵肖靜, 王新華, 王萬軍, 等. 硫化錳夾雜物在YF45MnV鋼中行為的原位觀察. 北京科技大學學報, 2010, 32(5): 570 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201005004.htm
Shao X J, Wang X H, Wang W J, et al. In-situ observation of manganese sulfide inclusions in YF45MnV steel. J Univ Sci Technol Beijing, 2010, 32(5): 570 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201005004.htm
|
[22] |
Webb E G, Suter T, Alkire R C. Microelectrochemical measurements of the dissolution of single MnS inclusions, and the prediction of the critical conditions for pit initiation on stainless steel. J Electrochem Soc, 2001, 148(5): B186 doi: 10.1149/1.1360205
|
[23] |
Lillard R S, Kashfipour M A, Niu W. Pit propagation at the boundary between manganese sulfide inclusions and austenitic stainless steel 303 and the role of copper. J Electrochem Soc, 2016, 163(8): C440 doi: 10.1149/2.0461608jes
|
[24] |
Ha H Y, Park C J, Kwon H S. Effects of misch metal on the formation of non-metallic inclusions and the associated resistance to pitting corrosion in 25% Cr duplex stainless steels. Scripta Mater, 2006, 55(11): 991 doi: 10.1016/j.scriptamat.2006.08.014
|
[25] |
Williams D E, Zhu Y Y. Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions. J Electrochem Soc, 2000, 147(5): 1763 doi: 10.1149/1.1393431
|
[26] |
Williams D E, Mohiuddin T F, Zhu Y Y. Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy. J Electrochem Soc, 1998, 145(8): 2664 doi: 10.1149/1.1838697
|
[27] |
Ohta H, Suito H. Activities in CaO-SiO2-Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9
|
[28] |
Zheng J C, Hu X J, Pan C, et al. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel. Mater Corros, 2018, 69(5): 572 doi: 10.1002/maco.201709723
|
[29] |
Amadou T, Sidhom H, Braham C. Double loop electrochemical potentiokinetic reactivation test optimization in checking of duplex stainless steel intergranular corrosion susceptibility. Metall Mater Trans A, 2004, 35(11): 3499 doi: 10.1007/s11661-004-0187-4
|
[30] |
Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3): 969 doi: 10.1016/j.corsci.2009.11.020
|