<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
WANG Zhen, XU Xiao-wen, WANG Kuai-she, WANG Wen. Preparation and hot compression deformation of biomedical Ni-Ti alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 238-245. doi: 10.13374/j.issn2095-9389.2019.02.011
Citation: WANG Zhen, XU Xiao-wen, WANG Kuai-she, WANG Wen. Preparation and hot compression deformation of biomedical Ni-Ti alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 238-245. doi: 10.13374/j.issn2095-9389.2019.02.011

Preparation and hot compression deformation of biomedical Ni-Ti alloy

doi: 10.13374/j.issn2095-9389.2019.02.011
More Information
  • Corresponding author: XU Xiao-wen, E-mail: xuxiaowen@csu.edu.cn
  • Received Date: 2018-06-07
  • Publish Date: 2019-02-01
  • A Ti-50. 7% Ni (atomic fraction) shape alloy was prepared by vacuum induction melting under dynamic argon atmosphere. By analyzing the composition, deformation temperature, microstructure, and hardness of the as-cast Ni-Ti shape alloy in this study, it was found that the properties of the as-cast Ni-Ti alloy met the medical standard. To analyze the variation law of the flow stress, the flow stress of the compression deformation for as-cast Ni-Ti alloy was studied by high-temperature compression with a Gleeble-3800 simulated machine within a deformation temperature range of 750-950 ℃, strain rate range of 0. 001-1. 0 s-1, and strain level of 0. 5. To analyze the relationship between variables in the hot deformation process of as-cast Ni-Ti alloy, a constitutive equation based on dynamic material model was established. To determine the reasonable range of hot working conditions for as-cast Ni-Ti alloy deformation, hot processing maps under different hot deformation conditions were set up. The results show that when the deformation temperature decreases or strain rate increases, the flow stress of as-cast Ni-Ti alloy increases. This phenomenon shows that the main factors affecting the flow stress of as-cast Ni-Ti alloy are deformation temperature and strain rate. When the strain rate is 1. 0 s-1, the true stress-true strain curves of as-cast Ni-Ti alloy exhibits a zigzag feature. This is mainly attributed to the alternation between hardening and softening during deformation. According to the hot processing maps under different hot deformation conditions, the processing zone and unstable hot deformation region of the as-cast Ni-Ti alloy were obtained. Then, the best temperature range of hot deformation is determined as 820-880 ℃, and the true strain rate is less than 0. 1 s-1. This study provides a theoretical and data basis for the development of forging process parameters of Ni-Ti alloy.

     

  • loading
  • [1]
    Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084
    [2]
    Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater, 2010, 58(9): 3444 doi: 10.1016/j.actamat.2010.02.019
    [3]
    Jiang S Y, Zhang Y Q. Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression. Trans Nonferrous Met Soc China, 2012, 22(1): 90 doi: 10.1016/S1003-6326(11)61145-X
    [4]
    趙維彪. 鎳鈦形狀記憶合金的材料學特征與醫學應用. 中國組織工程研究與臨床康復, 2007, 11(22): 4376 https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF200722030.htm

    Zhao W B. Material characteristic and medical application of nickel-titanium shape memory alloy. J Clin Rehabilitative Tissue Eng Res, 2007, 11(22): 4376 https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF200722030.htm
    [5]
    Niinomi M. Recent metallic materials for biomedical application. Metall Mater Trans A, 2002, 33(3): 477 doi: 10.1007/s11661-002-0109-2
    [6]
    張永濤, 劉漢源, 王昌, 等. 生物醫用金屬材料的研究應用現狀及發展趨勢. 熱加工工藝, 2017, 46(4): 21 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201704006.htm

    Zhang Y T, Liu H Y, Wang C, et al. Development trend and research application situation of biomedical metal materials. Hot Working Technol, 2017, 46(4): 21 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201704006.htm
    [7]
    高英俊, 陳華寧. 形狀記憶合金及其在醫學中的應用. 廣西物理, 2001, 22(1): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-GXWL200101006.htm

    Gao Y J, Chen H N. Shape memory alloy and its application in medicine. Guangxi Phys, 2001, 22(1): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-GXWL200101006.htm
    [8]
    于振濤, 余森, 程軍, 等. 新型醫用鈦合金材料的研發和應用現狀. 金屬學報, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288

    Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials. Acta Metall Sinica, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288
    [9]
    雷文光, 趙永慶, 韓棟, 等. 鈦及鈦合金熔煉技術發展現狀. 材料導報, 2016, 30(3): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201605018.htm

    Lei W G, Zhao Y Q, Han D, et al. Development of melting technology for titanium alloys. Mater Rev, 2016, 30(3): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201605018.htm
    [10]
    陳威, 張偉紅, 劉禮華, 等. NiTi基形狀記憶合金加工工藝研究的現狀和發展趨勢. 鍛壓技術, 2005(增刊1): 24 https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZGVE200507001008&dbname=IPFD9914

    Chen W, Zhang W H, Liu L H, et al. Status and trend in the development of the research on the processing technic for NiTi SMA. Forging Stamping Technol, 2005(Suppl 1): 24 https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZGVE200507001008&dbname=IPFD9914
    [11]
    張紅鋼, 何勇, 劉雪峰, 等. Ni-Ti形狀記憶合金熱壓縮變形行為及本構關系. 金屬學報, 2007, 43(9): 930 doi: 10.3321/j.issn:0412-1961.2007.09.007

    Zhang H G, He Y, Liu X F, et al. Hot deformation behavior and constitutive relationship of Ni-Ti shape memory alloy during compression at elevated temperatures. Acta Metall Sinica, 2007, 43(9): 930 doi: 10.3321/j.issn:0412-1961.2007.09.007
    [12]
    張偉紅, 張士宏. NiTi合金熱壓縮試驗數據的修正及其本構方程. 金屬學報, 2006, 42(10): 1036 doi: 10.3321/j.issn:0412-1961.2006.10.007

    Zhang W H, Zhang S H. Correction of hot compression test data and constitutive equation of NiTi alloy. Acta Metall Sinica, 2006, 42(10): 1036 doi: 10.3321/j.issn:0412-1961.2006.10.007
    [13]
    達國祖, 夏天東, 王天民, 等. 多孔NiTi記憶合金的制備與微觀分析. 蘭州大學學報(自然科學版), 2003, 39(10): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200303008.htm

    Da G Z, Xia T D, Wang T M, et al. Preparation of porous NiTi shape memory alloy and its microstructure analysis. J Lanzhou Univ Nat Sci, 2003, 39(10): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200303008.htm
    [14]
    Jiang S Y, Tang M, Zhao Y N, et al. Crystallization of amorphous NiTi shape memory alloy fabricated by severe plastic deformation. Trans Nonferrous Met Soc China, 2014, 24(6): 1758 doi: 10.1016/S1003-6326(14)63250-7
    [15]
    賀志榮, 張永宏, 劉琛, 等. TiNi合金相變、形狀及超彈性行為研究. 陜西工學院學報, 1998(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX804.000.htm

    He Z R, Zhang Y H, Liu C, et al. Study on phase transition, shape and superelastic behavior of TiNi alloy. J Shaanxi Inst Technol, 1998(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX804.000.htm
    [16]
    Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel. Mater Des, 2017, 115: 262 doi: 10.1016/j.matdes.2016.11.054
    [17]
    Pu E X, Zheng W J, Xiang J Z, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654. Mater Sci Eng A, 2014, 598: 174 doi: 10.1016/j.msea.2014.01.027
    [18]
    Morakabati M, Kheirandish S, Aboutalebi M, et al. A study on the hot workability of wrought NiTi shape memory alloy. Mater Sci Eng A, 2011, 528(18): 5656 doi: 10.1016/j.msea.2011.04.036
    [19]
    Wan Z P, Hu L X, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy. J Alloys Compd, 2018, 15(769): 367 http://www.sciencedirect.com/science/article/pii/S0925838818328846
    [20]
    Zhang H D, Liu Y, Zhang F, et al. Hot deformation behavior and processing maps of diamond/Cu composites. Metall Mater Trans A, 2018, 49(6): 2202 doi: 10.1007/s11661-018-4547-x
    [21]
    Sun Y, Feng X Y, Hu L X, et al. Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method. J Alloys Compd, 2018, 753: 256 doi: 10.1016/j.jallcom.2018.04.225
    [22]
    Edalati K, Horita Z. High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater, 2011, 59(17): 6831 doi: 10.1016/j.actamat.2011.07.046
    [23]
    Wang W Y, Pan Q L, Sun Y W, et al. Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al-7.82Zn-1.96Mg-2.35Cu-0.11Zr alloy. J Mater Sci, 2018, 53(16): 11728 doi: 10.1007/s10853-018-2388-z
    [24]
    Zhang Y Q, Jiang S Y, Zhao Y N, et al. Constitutive equation and processing map of equiatomic NiTi shape memory alloy under hot plastic deformation. Trans Nonferrous Met Soc China, 2016, 26(8): 2152 doi: 10.1016/S1003-6326(16)64283-8
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (1097) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频