<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, WANG Guang-wei. Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth[J]. Chinese Journal of Engineering, 2019, 41(2): 190-198. doi: 10.13374/j.issn2095-9389.2019.02.005
Citation: JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, WANG Guang-wei. Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth[J]. Chinese Journal of Engineering, 2019, 41(2): 190-198. doi: 10.13374/j.issn2095-9389.2019.02.005

Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth

doi: 10.13374/j.issn2095-9389.2019.02.005
More Information
  • Corresponding author: JIAO Ke-xin, E-mail: jiaokexin_ustb@126.com
  • Received Date: 2018-02-28
  • Publish Date: 2019-02-01
  • In theory and practice, TiO2-bearing iron ores are the preferred raw materials for prolonging blast furnace times due to their protection of the refractory lining of the hearth. Currently, however, a lack of detailed understanding of the mineralogical composition, formation mechanism, and ratio of C to N in the Ti(C, N) solid solution leaves the blast furnace operator unable to employ a scientific and effective measure to deal with abnormal hearth erosion. As a result, frequent hearth breakouts might occur, causing great financial loss to steel companies. In the present work, in an attempt to clarify the essence of longevity blast furnaces, investigations were conducted into blast furnace hearth damage together with dissection analyses, to derive the mineralogical composition and microstructure of titanium-bearing protective layers. The results show that the exact chemical composition of the TiCxN1-x which formed in the blast furnace is TiC0.3N0.7. Based on thermodynamic analysis, the standard Gibbs free energy of the formation of Ti(C, N) decreases at first, then increases with increasing TiC content. At different temperatures, the proportion of TiC and TiN in the solid solution is different, i.e., more TiC at higher temperatures but more TiN at lower temperatures. At 1423℃, the TiC0.3N0.7 is formed in the hot-side of the investigated blast furnace hearth, and the thickness of the titanium-bearing protective layer varies with smelting intensity, temperature, and circulation strength of hot metal. This paper classifies the protective layer into various types based on formation mechanism. Finally, a comprehensive regulatory scheme is presented to act as a basis for extending the lifespan of the blast furnace hearth.

     

  • loading
  • [1]
    Jiao K X, Zhang J L, Liu Z J, et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int, 2016, 56(11): 1956 doi: 10.2355/isijinternational.ISIJINT-2016-168
    [2]
    Liu Z J, Zhang J L, Yang T J. Low carbon operation of super-large blast furnaces in China. ISIJ Int, 2015, 55(6): 1146 doi: 10.2355/isijinternational.55.1146
    [3]
    Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2): 143 doi: 10.2298/JMMB141107018J
    [4]
    Jiao K X, Zhang J L, Liu Z J, et al. Dissection investigation of Ti(C, N) behavior in blast furnace hearth during vanadium titano-magnetite smelting. ISIJ Int, 2017, 57(1): 48 doi: 10.2355/isijinternational.ISIJINT-2016-419
    [5]
    Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2nd campaign). ISIJ Int, 2009, 49(4): 470 doi: 10.2355/isijinternational.49.470
    [6]
    Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3): 321 doi: 10.2355/isijinternational.43.321
    [7]
    Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10): 1139 doi: 10.2355/isijinternational.41.1139
    [8]
    焦克新, 張建良, 劉征建, 等. 高爐爐缸凝鐵層物相分析. 工程科學學報, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm

    Jiao K X, Zhang J L, Liu Z J, et al. Analysis of the phase of the solid iron layer in blast furnace hearth. Chin J Eng, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm
    [9]
    張建良, 焦克新, 劉征建, 等. 長壽高爐爐缸保護層綜合調控技術. 鋼鐵, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm

    Zhang J L, Jiao K X, Liu Z J, et al. Comprehensive regulation technology for hearth protective layer of blast furnace longevity. Iron Steel, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm
    [10]
    Li Y, Li Y Q, Fruehan R J. Formation of titanium carbonitride from hot metal. ISIJ Int, 2001, 41(12): 1417 doi: 10.2355/isijinternational.41.1417
    [11]
    Li Y, Fruehan R J. Thermodynamics of TiCN and TiC in Fe-C sat melts. Metall Mater Trans B, 2001, 32(6): 1203 doi: 10.1007/s11663-001-0108-5
    [12]
    白晨光, 裴鶴年, 趙詩金, 等. 碳氮化鈦粒度與熔渣粘度關系的研究. 鋼鐵釩鈦, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm

    Bai C G, Pei H N, Zhao S J, et al. An investigation of the relationship between the particle size of titanium carbonitride and the viscosity of blast furnace slag bearing high titania. Iron Steel Van Tit, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm
    [13]
    Zhen Y L, Zhang G H, Chou K C. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall Mater Trans B, 2015, 46(1): 155 doi: 10.1007/s11663-014-0169-x
    [14]
    Zhen Y L, Zhang G H, Chou K C, et al. Influence of TiN on viscosity of CaO-MgO-Al2O3-SiO2-(TiN) suspension system. Can Metall Q, 2015, 54(3): 340 doi: 10.1179/1879139515Y.0000000004
    [15]
    Liu Y X, Zhang J L, Zhang G H, et al. Influence of Ti(C0.3N0.7) on viscosity of blast furnace slags. Ironmak Steelmak, 2017, 44(8): 609 doi: 10.1080/03019233.2016.1223907
    [16]
    王喜慶. 釩鈦磁鐵礦高爐冶煉. 1版. 北京: 冶金工業出版社, 1994

    Wang X Q. Blast Furnace Smelting Vanadium Titanium Magnetite. 1st. Beijing: Metallurgical Industry Press, 1994
    [17]
    宋建成. 高爐含鈦物料護爐技術. 北京: 冶金工業出版社, 1994

    Song J C. Titanium Material Protection Technology. Beijing: Metallurgical Industry Press, 1994
    [18]
    Wada H, Pehlke R D. Nitrogen solubility and nitride formation in austenitic Fe-Ti alloys. Metall Trans B, 1985, 16(4): 815 doi: 10.1007/BF02667518
    [19]
    Ozturk B, Fruehan R J. Thermodynamics of inclusion formation in Fe-Ti-C-N alloys. Metall Trans B, 1990, 21(5): 879 doi: 10.1007/BF02657814
    [20]
    Sumito M, Tsuchiya N, Okabe K, et al. Solubility of titanium and carbon in molten Fe-Ti alloys saturated with carbon. Trans Iron Steel Inst Jpn, 1981, 21(6): 414 doi: 10.2355/isijinternational1966.21.414
    [21]
    Jonsson S. Assessment of the Fe-Ti-C system calculation of the Fe-Ti-C system and prediction of the solubility limit of Ti(C, N) in liquid Fe. Metall Mater Trans B, 1998, 29(2): 371 doi: 10.1007/s11663-998-0114-y
    [22]
    Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slags. Metall Mater Trans B, 1999, 30(1): 29 doi: 10.1007/s11663-999-0004-y
    [23]
    Jung I J, Kang S, Jhi S H, et al. A study of the formation of Ti(CN) solid solutions. Acta Mater, 1999, 47(11): 3241 doi: 10.1016/S1359-6454(99)00199-8
    [24]
    Jung I J, Kang S. A study of the characteristics of Ti(CN) solid solutions. J Mater Sci, 2000, 35(1): 87 doi: 10.1023/A:1004740516214
    [25]
    張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004

    Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004
    [26]
    郭漢杰. 冶金物理化學教程. 2版. 北京: 冶金工業出版社, 2006

    Guo H J. Physical Chemistry of Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2006
    [27]
    Kang S. Stability of nitrogen in titanium carbonitride solid solutions. Met Powder Rep, 1998, 53(5): 37 http://www.sciencedirect.com/science/article/pii/S0026065798850297
    [28]
    杜鶴桂. 高爐冶煉釩鈦磁鐵礦原理. 北京: 科學出版社, 1996

    Du H G. Blast Furnace Smelting Principle of Vanadium Titanium Magnetite. Beijing: Science Press, 1996
    [29]
    焦克新, 張建良, 左海濱, 等. 高爐爐缸黏滯層物相及形成機理. 東北大學學報(自然科學版), 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017

    Jiao K X, Zhang J L, Zuo H B, et al. Composition and formation mechanism of viscous layers in blast furnace hearth. J Northeast Univ Nat Sci, 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017
    [30]
    Jiao K X, Zhang J L, Hou Q F, et al. Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction. Steel Res Int, 2017, 88(9): 1600475-1 doi: 10.1002/srin.201600475
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (897) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频