Citation: | JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, WANG Guang-wei. Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth[J]. Chinese Journal of Engineering, 2019, 41(2): 190-198. doi: 10.13374/j.issn2095-9389.2019.02.005 |
[1] |
Jiao K X, Zhang J L, Liu Z J, et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int, 2016, 56(11): 1956 doi: 10.2355/isijinternational.ISIJINT-2016-168
|
[2] |
Liu Z J, Zhang J L, Yang T J. Low carbon operation of super-large blast furnaces in China. ISIJ Int, 2015, 55(6): 1146 doi: 10.2355/isijinternational.55.1146
|
[3] |
Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2): 143 doi: 10.2298/JMMB141107018J
|
[4] |
Jiao K X, Zhang J L, Liu Z J, et al. Dissection investigation of Ti(C, N) behavior in blast furnace hearth during vanadium titano-magnetite smelting. ISIJ Int, 2017, 57(1): 48 doi: 10.2355/isijinternational.ISIJINT-2016-419
|
[5] |
Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2nd campaign). ISIJ Int, 2009, 49(4): 470 doi: 10.2355/isijinternational.49.470
|
[6] |
Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3): 321 doi: 10.2355/isijinternational.43.321
|
[7] |
Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10): 1139 doi: 10.2355/isijinternational.41.1139
|
[8] |
焦克新, 張建良, 劉征建, 等. 高爐爐缸凝鐵層物相分析. 工程科學學報, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm
Jiao K X, Zhang J L, Liu Z J, et al. Analysis of the phase of the solid iron layer in blast furnace hearth. Chin J Eng, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm
|
[9] |
張建良, 焦克新, 劉征建, 等. 長壽高爐爐缸保護層綜合調控技術. 鋼鐵, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm
Zhang J L, Jiao K X, Liu Z J, et al. Comprehensive regulation technology for hearth protective layer of blast furnace longevity. Iron Steel, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm
|
[10] |
Li Y, Li Y Q, Fruehan R J. Formation of titanium carbonitride from hot metal. ISIJ Int, 2001, 41(12): 1417 doi: 10.2355/isijinternational.41.1417
|
[11] |
Li Y, Fruehan R J. Thermodynamics of TiCN and TiC in Fe-C sat melts. Metall Mater Trans B, 2001, 32(6): 1203 doi: 10.1007/s11663-001-0108-5
|
[12] |
白晨光, 裴鶴年, 趙詩金, 等. 碳氮化鈦粒度與熔渣粘度關系的研究. 鋼鐵釩鈦, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm
Bai C G, Pei H N, Zhao S J, et al. An investigation of the relationship between the particle size of titanium carbonitride and the viscosity of blast furnace slag bearing high titania. Iron Steel Van Tit, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm
|
[13] |
Zhen Y L, Zhang G H, Chou K C. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall Mater Trans B, 2015, 46(1): 155 doi: 10.1007/s11663-014-0169-x
|
[14] |
Zhen Y L, Zhang G H, Chou K C, et al. Influence of TiN on viscosity of CaO-MgO-Al2O3-SiO2-(TiN) suspension system. Can Metall Q, 2015, 54(3): 340 doi: 10.1179/1879139515Y.0000000004
|
[15] |
Liu Y X, Zhang J L, Zhang G H, et al. Influence of Ti(C0.3N0.7) on viscosity of blast furnace slags. Ironmak Steelmak, 2017, 44(8): 609 doi: 10.1080/03019233.2016.1223907
|
[16] |
王喜慶. 釩鈦磁鐵礦高爐冶煉. 1版. 北京: 冶金工業出版社, 1994
Wang X Q. Blast Furnace Smelting Vanadium Titanium Magnetite. 1st. Beijing: Metallurgical Industry Press, 1994
|
[17] |
宋建成. 高爐含鈦物料護爐技術. 北京: 冶金工業出版社, 1994
Song J C. Titanium Material Protection Technology. Beijing: Metallurgical Industry Press, 1994
|
[18] |
Wada H, Pehlke R D. Nitrogen solubility and nitride formation in austenitic Fe-Ti alloys. Metall Trans B, 1985, 16(4): 815 doi: 10.1007/BF02667518
|
[19] |
Ozturk B, Fruehan R J. Thermodynamics of inclusion formation in Fe-Ti-C-N alloys. Metall Trans B, 1990, 21(5): 879 doi: 10.1007/BF02657814
|
[20] |
Sumito M, Tsuchiya N, Okabe K, et al. Solubility of titanium and carbon in molten Fe-Ti alloys saturated with carbon. Trans Iron Steel Inst Jpn, 1981, 21(6): 414 doi: 10.2355/isijinternational1966.21.414
|
[21] |
Jonsson S. Assessment of the Fe-Ti-C system calculation of the Fe-Ti-C system and prediction of the solubility limit of Ti(C, N) in liquid Fe. Metall Mater Trans B, 1998, 29(2): 371 doi: 10.1007/s11663-998-0114-y
|
[22] |
Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slags. Metall Mater Trans B, 1999, 30(1): 29 doi: 10.1007/s11663-999-0004-y
|
[23] |
Jung I J, Kang S, Jhi S H, et al. A study of the formation of Ti(CN) solid solutions. Acta Mater, 1999, 47(11): 3241 doi: 10.1016/S1359-6454(99)00199-8
|
[24] |
Jung I J, Kang S. A study of the characteristics of Ti(CN) solid solutions. J Mater Sci, 2000, 35(1): 87 doi: 10.1023/A:1004740516214
|
[25] |
張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004
Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004
|
[26] |
郭漢杰. 冶金物理化學教程. 2版. 北京: 冶金工業出版社, 2006
Guo H J. Physical Chemistry of Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2006
|
[27] |
Kang S. Stability of nitrogen in titanium carbonitride solid solutions. Met Powder Rep, 1998, 53(5): 37 http://www.sciencedirect.com/science/article/pii/S0026065798850297
|
[28] |
杜鶴桂. 高爐冶煉釩鈦磁鐵礦原理. 北京: 科學出版社, 1996
Du H G. Blast Furnace Smelting Principle of Vanadium Titanium Magnetite. Beijing: Science Press, 1996
|
[29] |
焦克新, 張建良, 左海濱, 等. 高爐爐缸黏滯層物相及形成機理. 東北大學學報(自然科學版), 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017
Jiao K X, Zhang J L, Zuo H B, et al. Composition and formation mechanism of viscous layers in blast furnace hearth. J Northeast Univ Nat Sci, 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017
|
[30] |
Jiao K X, Zhang J L, Hou Q F, et al. Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction. Steel Res Int, 2017, 88(9): 1600475-1 doi: 10.1002/srin.201600475
|