<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
CHEN Qian-chong, HAN Xiu-li, LIU Lei. Distribution patterns and formation mechanisms of the mineralogical structure of high basicity sinter[J]. Chinese Journal of Engineering, 2019, 41(2): 181-189. doi: 10.13374/j.issn2095-9389.2019.02.004
Citation: CHEN Qian-chong, HAN Xiu-li, LIU Lei. Distribution patterns and formation mechanisms of the mineralogical structure of high basicity sinter[J]. Chinese Journal of Engineering, 2019, 41(2): 181-189. doi: 10.13374/j.issn2095-9389.2019.02.004

Distribution patterns and formation mechanisms of the mineralogical structure of high basicity sinter

doi: 10.13374/j.issn2095-9389.2019.02.004
More Information
  • Corresponding author: CHEN Qian-chong, E-mail: cx20170529@126.com
  • Received Date: 2018-01-14
  • Publish Date: 2019-02-01
  • Based on their inhomogeneity, three distribution pattern categories of the mineralogical structure of sinters, and their formation mechanisms, were detailed. First, based on the identifiable characteristics of hand specimens, the sinters in a steel plant were divided into three categories (Category 1, Category 2, Category 3). Second, according to the identification characteristics of the microstructure of sinters, three distribution patterns of the mineralogical structure for the three categories of sinters were established, those being uniform, concentric annular, and intercalated. The homogeneous mineral phase structures, which have good metallurgical properties, are mostly interlaced erosion and erosion structure, and the mineral phase structures are formed under stable conditions with higher temperature, stronger reduction, and uniform mixture. The concentric annular mineralogical structures from the outside to the inner belt are interlaced erosion structure, erosion structure, and hematite granular structure, separately. These structures formed under deteriorative process conditions and have no obvious adverse effect on the overall structure and metallurgical properties of sinters. The intercalated mineral phase structure, formed by the interlaced erosion structure, hematite granular structure, and calcium ferrate accumulation area, is mostly formed under conditions of lower temperature, unstable air flow, and inhomogeneous mixture. Getting together may lead to the deterioration of the structure and metallurgical properties of the sinter. Finally, the results of a metallurgical performance analysis show that the metallurgical index of Category 1 and Category 2 are satisfactory, and Category 3, with its intercalated distribution pattern, shows relatively poor metallurgical performance due to the inhomogeneous structure. The above results indicate that the research method based on the distribution pattern of mineral phase structure can be conducive to the discovery of the formation mechanism of the mineralogical structure, and can help to control the sintering raw materials and sintering atmosphere. It has certain theoretical value for improving the metallurgical properties of sinter.

     

  • loading
  • [1]
    王海風, 裴元東, 張春霞, 等. 中國鋼鐵工業燒結/球團工序綠色發展工程科技戰略及對策. 鋼鐵, 2016, 51(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201601001.htm

    Wang H F, Pei Y D, Zhang C X, et al. Green development of sintering/pellet procedure in China iron and steel industry. Iron Steel, 2016, 51(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201601001.htm
    [2]
    張建良, 劉東輝, 王筱留, 等. 燒結礦化學成分控制現狀及發展方向. 燒結球團, 2017, 42(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT201704001.htm

    Zhang J L, Liu D H, Wang X L, et al. Research status development trend of chemical composition control of sinter. Sintering Pelletizing, 2017, 42(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT201704001.htm
    [3]
    任允芙. 鋼鐵冶金巖相礦相學. 北京: 冶金工業出版社, 1982

    Ren Y F. Lithofacies and Metallography of Iron and Steel. Beijing: Metallurgical Industry Press, 1982
    [4]
    任佩珊, 閆麗娟. 礦物組成及顯微結構對燒結礦質量的影響. 寶鋼技術, 1997(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-BGJS702.009.htm

    Ren P S, Yan L J. Influence of mineral composition and microstructure on sinter quality. Baosteel Technol, 1997(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-BGJS702.009.htm
    [5]
    Wang W, Deng M, Xu R S, et al. Three dimensional structure and micro-mechanical properties of iron ore sinter. J Iron Steel Res Int, 2017, 24(10): 998 doi: 10.1016/S1006-706X(17)30146-2
    [6]
    王煒, 徐維波, 朱航宇, 等. 高堿度燒結礦的三維礦相特性分析. 鋼鐵研究學報, 2016, 28(11): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201611002.htm

    Wang W, Xu W B, Zhu H Y, et al. Analysis of three-dimensional mineral phase of high basicity sinter. J Iron Steel Res, 2016, 28(11): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201611002.htm
    [7]
    劉麗娜, 韓秀麗, 劉磊. 不同類型燒結礦隨堿度變化的礦相結構研究. 鋼鐵釩鈦, 2017, 38(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702028.htm

    Liu L N, Han X L, Liu L. Study on texture of sinter with different basicity. Iron Steel Vanadium Titanium, 2017, 38(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702028.htm
    [8]
    劉麗娜, 韓秀麗, 李志民, 等. 配碳量對細粒赤鐵精粉燒結礦礦相結構及冶金性能的影響. 鋼鐵釩鈦, 2014, 35(2): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201402021.htm

    Liu L N, Han X L, Li Z M, et al. Influence of carbon addition on mineralogical structures and metallurgical properties of sinter prepared with fine-grained hematite concentrates. Iron Steel Vanadium Titanium, 2014, 35(2): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201402021.htm
    [9]
    肖志新, 胡正剛, 余珊珊, 等. 燒結礦孔洞結構對燒結強度的影響. 鋼鐵研究, 2017, 45(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201704001.htm

    Xiao Z X, Hu Z G, Yu S S, et al. Effect of pore structure of sinter ore on sintering strength. Res Iron Steel, 2017, 45(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201704001.htm
    [10]
    Pimenta H P, Seshadri V. Characterisation of structure of iron ore sinter and its behavior during reduction at low temperatures. Ironmaking Steelmaking, 2002, 29(3): 169 doi: 10.1179/030192302225002009
    [11]
    Jursova S, Pustejovska P, Brozova S. Study on reducibility and porosity of metallurgical sinter. Alexandria Eng J, 2018, 57(3): 1657 doi: 10.1016/j.aej.2017.03.007
    [12]
    喬瑞慶, 杜鶴桂. 低氟燒結礦微氣孔的形成機理及對燒結礦強度的影響. 鋼鐵研究學報, 1999, 11(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON199906000.htm

    Qiao R Q, Du H G. Forming mechanism of pore in sinter with low fluorine and its effect on the sinter strength. J Iron Steel Res, 1999, 11(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON199906000.htm
    [13]
    E Ф維格曼, Б Н熱廖賓, Ю С尤斯芬, 等. 煉鐵學. 董學經, 楊乃伏, 譯. 北京: 冶金工業出版社, 1993

    E Ф вигман, Б Н Лёпин, Ю С Юсфин, et al. Siderology. Translated by Dong X J, Yang N F. Beijing: Metallurgical Industry Press, 1993
    [14]
    龍防. 富Al2O3礦對煉鐵原料及冶煉過程的影響[學位論文]. 武漢: 武漢科技大學, 2006

    Long F. The Effection on Ironmaking Raw Materials and Metallurgical Process by High Content of Al2O3 Iron Ore [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006
    [15]
    李光森. 黏結相對燒結礦強度的影響機理及其合理組分的探討[學位論文]. 沈陽: 東北大學, 2008

    Li G S. Study on Effect Mechanism of Binding Phase to Sinter's Strength and Binding Phase's Proper Composition [Dissertation]. Shenyang: Northeastern University, 2008
    [16]
    鄧明, 王煒, 徐潤生, 等. 釩鈦燒結礦和普通燒結礦顯微力學性能對比. 鋼鐵釩鈦, 2017, 38(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702026.htm

    Den M, Wang W, Xu R S, et al. Comparative research on micro-mechanical properties of vanadium-titanium sinter and ordinary sinter. Iron Steel Vanadium Titanium, 2017, 38(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702026.htm
    [17]
    張策. 礦物組成及微觀結構對南鋼燒結礦質量影響的研究[學位論文]. 鞍山: 遼寧科技大學, 2016

    Zhang C. Influence of Mineral Composition and Microstructure on the Sinter Quality of Nanjing Steel [Dissertation]. Anshan: University of Science and Technology Liaoning, 2016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views (853) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频