Citation: | LI Ang, LIU Xue-feng, YU Bo, YIN Bao-qiang. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2): 159-173. doi: 10.13374/j.issn2095-9389.2019.02.002 |
[1] |
Mohan Pandey P, Venkata Reddy N, Dhande S G. Slicing procedures in layered manufacturing: a review. Rapid Prototyping J, 2003, 9(5): 274 doi: 10.1108/13552540310502185
|
[2] |
Qi L H, Chao Y P, Luo J, et al. A novel selection method of scanning step for fabricating metal components based on micro-droplet deposition manufacture. Int J Mach Tools Manuf, 2012, 56: 50 doi: 10.1016/j.ijmachtools.2011.12.002
|
[3] |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev, 2012, 57(3): 133 doi: 10.1179/1743280411Y.0000000014
|
[4] |
Frazier W E. Metal additive manufacturing: a review. J Mater Eng Perform, 2014, 23(6): 1917 doi: 10.1007/s11665-014-0958-z
|
[5] |
Pinkerton A J. Lasers in additive manufacturing. Opt Laser Technol, 2016, 78: 25 doi: 10.1016/j.optlastec.2015.09.025
|
[6] |
Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf, 2006, 46(12-13): 1459 doi: 10.1016/j.ijmachtools.2005.09.005
|
[7] |
Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci, 2018, 141: 207 doi: 10.1016/j.commatsci.2017.09.018
|
[8] |
Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev, 2016, 61(5): 315 doi: 10.1080/09506608.2015.1116649
|
[9] |
Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res, 2016, 34(3): 369 doi: 10.1002/jor.23075
|
[10] |
Deckard C R. Method and Apparatus for Producing Parts by Selective Sintering: US Patent, US005316580A. 1994-05-31
|
[11] |
Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J, 2005, 11(1): 26 doi: 10.1108/13552540510573365
|
[12] |
Kruth J P, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assembly Autom, 2003, 23(4): 357 doi: 10.1108/01445150310698652
|
[13] |
Orme M. A novel technique of rapid solidification net-form materials synthesis. J Mater Eng Perform, 1993, 2(3): 399 doi: 10.1007/BF02648828
|
[14] |
Fang M, Chandra S, Park C B. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping J, 2008, 14(1): 44 doi: 10.1108/13552540810841553
|
[15] |
Liu Q B, Orme M. High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol, 2001, 115(3): 271 doi: 10.1016/S0924-0136(01)00740-3
|
[16] |
Meiners W, Wissenbach K D, Gasser A D. Shaped Body especially Prototype or Replacement Part Production: DE Patent, DE19649865C1. 1998-02-12
|
[17] |
Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting. Appl Phys B, 2015, 119(3): 545 doi: 10.1007/s00340-015-6059-3
|
[18] |
Jeantette F P, Keicher D M, Romero J A, et al. Method and System for Producing Complex-shape Objects: US Patent, 6046426. 2000-04-04
|
[19] |
Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4
|
[20] |
Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding. Proc Instn Mech Eng Part B J Eng Manuf, 1998, 212(3): 175 doi: 10.1243/0954405981515590
|
[21] |
Andersson L E, Larsson M. Device and Arrangement for Producing A Three-dimensional Object: US Patent, 7537722B2. 2009-05-26
|
[22] |
Z?h M F, Lutzmann S. Modelling and simulation of electron beam melting. Prod Eng, 2010, 4(1): 15 doi: 10.1007/s11740-009-0197-6
|
[23] |
Wu G H, Langrana N A, Sadanji R, et al. Solid freeform fabrication of metal components using fused deposition of metals. Mater Des, 2002, 23(1): 97 doi: 10.1016/S0261-3069(01)00079-6
|
[24] |
Mireles J, Espalin D, Roberson D, et al. Fused deposition modeling of metals//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2012: 836 http://www.researchgate.net/publication/289208001_Fused_deposition_modeling_of_metals
|
[25] |
Taminger K M B, Hafley Robert A. Characterization of 2219 aluminum produced by electron beam freeform fabrication//Proceeding of the 13th Solid Freeform Fabrication Symposium. Austin, 2002: 482
|
[26] |
Chen T, Pang S Y, Tang Q, et al. Evaporation ripped metallurgical pore in electron beam freeform fabrication of Ti-6-Al-4-V. Mater Manuf Processes, 2016, 31(15): 1995 doi: 10.1080/10426914.2015.1127948
|
[27] |
Yan W Z, Yue Z F, Zhang J Z. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication. Mater Des, 2016, 89: 1205 doi: 10.1016/j.matdes.2015.10.094
|
[28] |
楊永強, 葉梓恒, 王迪, 等. 3D打印設備國內產業化可行性分析. 新材料產業, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm
Yang Y Q, Ye Z H, Wang D, et al. Feasibility analysis of domestic industrialization of 3D printing equipment. Adv Mater Ind, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm
|
[29] |
王華明. 高性能大型金屬構件激光增材制造: 若干材料基礎問題. 航空學報, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
|
[30] |
黃衛東. 材料3D打印技術的研究進展. 新型工業化, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm
Huang W D. Research progress of 3D printing technology materials. J New Industrialization, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm
|
[31] |
Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 doi: 10.1016/j.pmatsci.2016.08.001
|
[32] |
Karunakaran K P, Bernard A, Suryakumar S, et al. Rapid manufacturing of metallic objects. Rapid Prototyping J, 2012, 18(4): 264 doi: 10.1108/13552541211231644
|
[33] |
Seifi M, Salem A, Beuth J, et al. Overview of materials qualification needs for metal additive manufacturing. JOM, 2016, 68(3): 747 doi: 10.1007/s11837-015-1810-0
|
[34] |
Xiong J, Zhang G J. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol, 2014, 214(4): 962 doi: 10.1016/j.jmatprotec.2013.11.014
|
[35] |
徐林峰. 均勻液滴噴射微制造技術基礎研究[學位論文]. 西安: 西北工業大學, 2005
Xu L F. Foundational Research on Uniform Droplets Spraying Micro-fabrication Technology [Dissertation]. Xi'an: Northwestern Polytechnical University, 2005
|
[36] |
熊俊. 多層單道GMA增材制造成形特性及熔敷尺寸控制[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
Xiong J. Forming Characteristics in Multi-layer Single-head GMA Additive Manufacturing and Control for Deposition Dimension [Dissertation]. Harbin: Harbin Institute of Technology, 2014
|
[37] |
何龍. 基于五軸聯動的半固態金屬擠出沉積成型技術研究[學位論文]. 武漢: 華中科技大學, 2015
He L. The Study on Semi-solid Metal Extrusion Deposition Molding Technology Based on Five-axis Linkage CNC Workbench [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2015
|
[38] |
王兵. 新型選區激光熔化設備開發與工藝研究[學位論文]. 長沙: 湖南大學, 2016
Wang B. Novel Equipment Development and Process Research on Selective Laser Melting[Dissertation]. Changsha: Hunan University, 2016
|
[39] |
陳光霞, 曾曉雁. 選擇性激光熔化激光快速成型鋪粉裝置設計. 制造技術與機床, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018
Chen G X, Zeng X Y. Design on SLM powder coating device. Manuf Technol Mach Tool, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018
|
[40] |
崔祎赟. 激光選區熔化鋪粉系統設計研究[學位論文]. 南京: 南京理工大學, 2016
Cui Y Y. Study on the Design of Powder Coating System of Selective Laser Melting[Dissertation]. Nanjing: Nanjing University of Science and Technology, 2016
|
[41] |
Mahesh M, Wong Y S, Fuh J Y H, et al. A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol, 2006, 31(3-4): 374 doi: 10.1007/s00170-005-0201-z
|
[42] |
Wen S Y, Shin Y C, Murthy J Y, et al. Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transfer, 2009, 52(25-26): 5867 doi: 10.1016/j.ijheatmasstransfer.2009.07.018
|
[43] |
Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol, 2010, 210(15): 2125 doi: 10.1016/j.jmatprotec.2010.07.036
|
[44] |
田鳳杰, 韓輝. 功能梯度材料激光快速成形同軸送粉系統設計. 沈陽理工大學學報, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012
Tian F J, Han H. Design of coaxial powder feeding system for FGM laser rapid shaping. Trans Shenyang Ligong Univ, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012
|
[45] |
Tseng A A, Lee M H, Zhao B. Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol-Trans ASME, 2001, 123(1): 74 doi: 10.1115/1.1286187
|
[46] |
鐘宋義. 均勻金屬微滴氣動按需噴射行為及表面形貌控制研究[學位論文]. 西安: 西北工業大學, 2016
Zhong S Y. Research on Uniform Metal Droplet Generation and Surface Topography Control in Metal Micro-droplet Deposition Manufacture[Dissertation]. Xi'an: Northwestern Polytechnical University, 2016
|
[47] |
Zhong S Y, Qi L H, Luo J, et al. Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol, 2014, 214(12): 3089 doi: 10.1016/j.jmatprotec.2014.07.012
|
[48] |
Mumtaz K A, Hopkinson N. Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol, 2010, 210(2): 279 doi: 10.1016/j.jmatprotec.2009.09.011
|
[49] |
Baek G Y, Lee K Y, Park S H, et al. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness. Met Mater Int, 2017, 23(6): 1204 doi: 10.1007/s12540-017-7049-2
|
[50] |
晏恒峰. 牙科激光選區熔化3D打印設備關鍵技術研究[學位論文]. 北京: 北京工業大學, 2016
Yan H F. Key Techniques Research on SLM 3D Printing Equipment for Dental Application [Dissertation]. Beijing: Beijing University of Technology, 2016
|
[51] |
Schleifenbaum H, Meiners W, Wissenbach K, et al. Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol, 2010, 2(3): 161 doi: 10.1016/j.cirpj.2010.03.005
|
[52] |
Hofman J T, Pathiraj B, Van Dijk J, et al. A camera based feedback control strategy for the laser cladding process. J Mater Process Technol, 2012, 212(11): 2455 doi: 10.1016/j.jmatprotec.2012.06.027
|
[53] |
Hu D M, Kovacevic R. Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf, 2003, 43(1): 51 doi: 10.1016/S0890-6955(02)00163-3
|
[54] |
Craeghs T, Clijsters S, Yasa E, et al. Online quality control of selective laser melting//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2011: 212 http://www.researchgate.net/publication/268293509_Online_quality_control_of_selective_laser_melting/download
|
[55] |
Herali? A, Christiansson A K, Ottosson M, et al. Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Lasers Eng, 2010, 48(4): 478 doi: 10.1016/j.optlaseng.2009.08.012
|
[56] |
Bi G J, Schürmann B, Gasser A, et al. Development and qualification of a novel laser-cladding head with integrated sensors. Int J Mach Tools Manuf, 2007, 47(3-4): 555 doi: 10.1016/j.ijmachtools.2006.05.010
|
[57] |
Hand D P, Fox M D T, Haran F M, et al. Optical focus control system for laser welding and direct casting. Opt Lasers Eng, 2000, 34(4-6): 415 doi: 10.1016/S0143-8166(00)00084-1
|
[58] |
Song L J, Mazumder J. Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol, 2011, 19(6): 1349 doi: 10.1109/TCST.2010.2093901
|
[59] |
張學軍, 唐思熠, 肇恒躍, 等. 3D打印技術研究現狀和關鍵技術. 材料工程, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm
Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm
|
[60] |
Tang Y, Loh H T, Wong Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater Process Technol, 2003, 140(1-3): 368 doi: 10.1016/S0924-0136(03)00766-0
|
[61] |
Yan C Z, Shi Y S, Yang J S, et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Technol, 2009, 209(17): 5785 doi: 10.1016/j.jmatprotec.2009.06.010
|
[62] |
Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A, 2002, 326(1): 110 doi: 10.1016/S0921-5093(01)01437-X
|
[63] |
Zhong S Y, Qi L H, Tang Y, et al. Development and experimental research of aluminium alloy droplet generator based on mechanical vibration. Procedia Eng, 2014, 81: 1583 doi: 10.1016/j.proeng.2014.10.194
|
[64] |
Su X B, Yang Y Q, Xiao D M, et al. An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol, 2013, 64(9-12): 1231 doi: 10.1007/s00170-012-4081-8
|
[65] |
Moat R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A, 2011, 528(6): 2288 doi: 10.1016/j.msea.2010.12.010
|
[66] |
Baufeld B, Brandl E, Van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol, 2011, 211(6): 1146 doi: 10.1016/j.jmatprotec.2011.01.018
|
[67] |
Pi G, Zhang A F, Zhu G X, et al. Research on the forming process of three-dimensional metal parts fabricated by laser direct metal forming. Int J Adv Manuf Technol, 2011, 57(9-12): 841 doi: 10.1007/s00170-011-3404-5
|
[68] |
Amano R S, Rohatgi P K. Laser engineered net shaping process for SAE 4140 low alloy steel. Mater Sci Eng A, 2011, 528(22-23): 6680 doi: 10.1016/j.msea.2011.05.036
|
[69] |
Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol, 2011, 57(5-8): 597 doi: 10.1007/s00170-011-3299-1
|
[70] |
Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol, 2004, 148(1): 93 doi: 10.1016/j.jmatprotec.2004.01.058
|
[71] |
Haden C V, Zeng G, Carter F M, et al. Wire and arc additive manufactured steel: tensile and wear properties. Addit Manuf, 2017, 16: 115
|
[72] |
Li X, Wang C T, Zhang W G, et al. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett, 2009, 63(3-4): 403 doi: 10.1016/j.matlet.2008.10.065
|
[73] |
K?rner C. Additive manufacturing of metallic components by selective electron beam melting-a review. Int Mater Rev, 2016, 61(5): 361 doi: 10.1080/09506608.2016.1176289
|
[74] |
Lodes M A, Guschlbauer R, K?rner C. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater Lett, 2015, 143: 298 doi: 10.1016/j.matlet.2014.12.105
|
[75] |
Rice C S, Mendez P F, Brown S B. Metal solid freeform fabrication using semi-solid slurries. JOM, 2000, 52(12): 31 doi: 10.1007/s11837-000-0065-5
|
[76] |
Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed. Mater Des, 2007, 28(8): 2278 doi: 10.1016/j.matdes.2006.08.008
|
[77] |
趙霄昊, 左振博, 韓志宇, 等. 粉末鈦合金3D打印技術研究進展. 材料導報, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm
Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology. Mater Rev, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm
|
[78] |
Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20 doi: 10.1016/j.jmbbm.2008.05.004
|
[79] |
Rafi H K, Karthik N V, Gong H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform, 2013, 22(12): 3872 doi: 10.1007/s11665-013-0658-0
|
[80] |
Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J, 2010, 16(6): 450 doi: 10.1108/13552541011083371
|
[81] |
Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: distance from build plate and part size. Mater Sci Eng A, 2013, 573: 264 doi: 10.1016/j.msea.2013.02.064
|
[82] |
Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater Sci Eng A, 2013, 573: 271 doi: 10.1016/j.msea.2013.02.065
|
[83] |
Edwards P, O'Conner A, Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng, 2013, 135(6): 061016-1
|
[84] |
Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd, 2015, 629: 351 doi: 10.1016/j.jallcom.2014.12.234
|
[85] |
Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater, 2015, 87: 309 doi: 10.1016/j.actamat.2014.12.054
|
[86] |
Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 doi: 10.1016/j.powtec.2017.01.030
|
[87] |
Zhong C L, Gasser A, Kittel J. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition. J Laser Appl, 2016, 28(2): 022010 doi: 10.2351/1.4943290
|
[88] |
Wang X Q, Gong X B, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B J Eng Manuf, 2017, 231(11): 1890 doi: 10.1177/0954405415619883
|
[89] |
Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication. Metall Mater Trans A, 2002, 33(8): 2559 doi: 10.1007/s11661-002-0376-y
|
[90] |
Zhong C L, Gasser A, Kittel J, et al. Study of process window development for high deposition-rate laser material deposition by using mixed processing parameters. J Laser Appl, 2015, 27(3): 032008-1 doi: 10.2351/1.4919804
|
[91] |
Baufeld B. Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform, 2012, 21(7): 1416 doi: 10.1007/s11665-011-0009-y
|
[92] |
Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A, 2016, 656: 47 doi: 10.1016/j.msea.2015.12.101
|
[93] |
Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater, 2013, 61(5): 1809 doi: 10.1016/j.actamat.2012.11.052
|
[94] |
趙曉明, 齊元昊, 于全成, 等. AlSi10Mg鋁合金3D打印組織與性能研究. 鑄造技術, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm
Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundry Technol, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm
|
[95] |
左寒松. 均勻鋁微滴沉積成形微觀組織演化機理研究[學位論文]. 西安: 西北工業大學, 2015
Zuo H S. Research on Microstructural Evolution of Uniform Molten Aluminum Droplets during Controlled Deposition Fabrication[Dissertation]. Xi'an: Northwestern Polytechnical University, 2015
|
[96] |
Simonelli M, Tuck C, Aboulkhair N T, et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall Mater Trans A, 2015, 46(9): 3842 doi: 10.1007/s11661-015-2882-8
|
[97] |
Yakout M, Elbestawi M A, Veldhuis S C. On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol, 2018, 95(5-8): 1953 doi: 10.1007/s00170-017-1303-0
|
[98] |
Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol, 2017, 249: 255 doi: 10.1016/j.jmatprotec.2017.05.042
|
[99] |
Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A, 2017, 703: 567 doi: 10.1016/j.msea.2017.05.024
|
[100] |
Alsalla H H, Smith C, Hao L. Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyping J, 2018, 24(1): 9 doi: 10.1108/RPJ-04-2016-0068
|
[101] |
Chen X H, Li J, Cheng X, et al. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A, 2018, 715: 307 doi: 10.1016/j.msea.2017.10.002
|
[102] |
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol, 2018, 34(8): 895 doi: 10.1080/02670836.2018.1455012
|
[103] |
Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A, 2015, 644: 171 doi: 10.1016/j.msea.2015.07.056
|
[104] |
Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping J, 1995, 1(1): 26 doi: 10.1108/13552549510078113
|
[105] |
Zhu H H, Lu L, Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol, 2003, 140(1-3): 314 doi: 10.1016/S0924-0136(03)00755-6
|
[106] |
Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater, 2012, 60(9): 3849 doi: 10.1016/j.actamat.2012.04.006
|
[107] |
Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J, 2009, 15(2): 96 doi: 10.1108/13552540910943397
|
[108] |
葉梓恒. Ti6Al4V脛骨植入體個性化設計及其激光選區熔化制造工藝研究[學位論文]. 廣州: 華南理工大學, 2014
Ye Z H. The Personalized Design and Process Research of Selective Laser Melting Manufacturing of Ti6Al4V Tibial Implant [Dissertation]. Guangzhou: South China University of Technology, 2014
|
[109] |
Aiyiti W, Zhao W H, Tang Y P, et al. Study on the process parameters of MPAW-based rapid prototyping. Key Eng Mater, 2007, 353-358: 1931 doi: 10.4028/www.scientific.net/KEM.353-358.1931
|
[110] |
Horii T, Kirihara S, Miyamoto Y. Freeform fabrication of Ti-Al alloys by 3D micro-welding. Intermetallics, 2008, 16(11-12): 1245 doi: 10.1016/j.intermet.2008.07.009
|
[111] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019
|
[112] |
郭超, 林峰, 葛文君. 電子束選區熔化成形316L不銹鋼的工藝研究. 機械工程學報, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm
Guo C, Lin F, Ge W J. Study on the fabrication process of 316L stainless steel via electron beam selective melting. J Mech Eng, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm
|
[113] |
陳彬斌. 電子束熔絲沉積快速成形傳熱與流動行為研究[學位論文]. 武漢: 華中科技大學, 2013
Chen B B. An Investigation of Heat Transfer and Fluid Flow Behaviors in Electron Beam Freeform Fabrication[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2013
|
[114] |
Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A, 2001, 317(1-2): 59 doi: 10.1016/S0921-5093(01)01179-0
|
[115] |
Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci, 2003, 38(1): 35 doi: 10.1023/A:1021153513925
|
[116] |
Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol, 2001, 111(1-3): 210 doi: 10.1016/S0924-0136(01)00522-2
|
[117] |
Wan H L, Wang Q Z, Lin H X. The effect of lack-of-fusion porosity on fatigue behavior of additive manufactured titanium alloy. Key Eng Mater, 2017, 723: 44 http://www.scientific.net/KEM.723.44
|
[118] |
Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture. Int J Mach Tools Manuf, 2013, 69: 38 doi: 10.1016/j.ijmachtools.2013.03.004
|
[119] |
Alfieri V, Argenio P, Caiazzo F, et al. Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Mater, 2017, 10(1): 30 http://www.ncbi.nlm.nih.gov/pubmed/28772380
|
[120] |
Wang D, Liu Y, Yang Y Q, et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyping J, 2016, 22(4): 706 doi: 10.1108/RPJ-06-2015-0078
|
[121] |
Xiong J, Li Y J, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol, 2018, 252: 128 doi: 10.1016/j.jmatprotec.2017.09.020
|
[122] |
Wu X H, Liang J, Mei J F, et al. Microstructures of laser-deposited Ti-6Al-4V. Mater Des, 2004, 25(2): 137 doi: 10.1016/j.matdes.2003.09.009
|
[123] |
Zuo H S, Li H J, Qi L H, et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl Phys A, 2015, 118(1): 327 doi: 10.1007/s00339-014-8735-2
|
[124] |
Zhai Y W, Galarraga H, Lados D A. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng, 2015, 114: 658 doi: 10.1016/j.proeng.2015.08.007
|
[125] |
Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 2012, 28(1): 1 http://www.cqvip.com/QK/84252X/201201/40832592.html
|
[126] |
劉雪峰, 李昂, 俞波, 等. 一種高效金屬3D打印設備和方法: 中國專利, CN201710068480.9. 2017-07-07
Liu X F, Li A, Yu B, et al. A High Efficiency Metal 3D Printing Equipment and Method: China Patent, CN201710068480.9. 2017-07-07
|