<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
ZHAO Yi-cheng, ZHU Guang-wei, QI Peng, ZHANG Zhi-hao. Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion–simulation[J]. Chinese Journal of Engineering, 2020, 42(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.01.07.002
Citation: ZHAO Yi-cheng, ZHU Guang-wei, QI Peng, ZHANG Zhi-hao. Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion–simulation[J]. Chinese Journal of Engineering, 2020, 42(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.01.07.002

Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion–simulation

doi: 10.13374/j.issn2095-9389.2019.01.07.002
More Information
  • Corresponding author: E-mail: ntzzh2279@163.com
  • Received Date: 2019-01-07
  • Publish Date: 2020-02-01
  • Nuclear-grade zirconium alloys are characterized by large deformation resistance, poor fluidity, strong viscosity, and narrow forming temperature range. They are widely used in the nuclear industry and are a good choice for structural components and fuel cladding materials for nuclear power reactors. Reasonable process parameters and tooling design are very important for the production of zirconium alloy products with excellent performance. Simulation is an important technical means in plastic forming process and tool structure optimization. A prerequisite for accurate simulation is to determine precise boundary conditions, such as friction factors in plastic forming process. In this study, the friction factors under the lubrication condition of Zr-4 alloy were determined by ring compression and extrusion simulation method. The reasons for the difference in friction factors measured by the two methods were discussed. The results show that when the roughness of the die (anvil) is Ra = 0.6 μm and the experimental temperature is 700?800 ℃, the friction factor between the Zr-4 alloy and the die obtained by the ring compression is 0.18?0.27, and the friction factor increases with increasing in the experimental temperature. When the extrusion temperature is 750 ℃, the average friction factor of hot-extrusion obtained by extrusion simulation is 0.35. The reason for the large difference in the test results is that the shear rate of the lubricant in the extrusion process is much larger than that of the ring compression experiment, and the compressive stress of the lubricant in the extrusion process is about twice that in the ring compression experiment, which leads to an increase in the lubricant viscosity so that the friction factor is higher. The friction factor obtained by the ring compression method is more suitable for hot working conditions such as the forging of Zr-4 alloys.

     

  • loading
  • [1]
    王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031

    Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. Rare Met Mater Eng, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031
    [2]
    過錫川, 欒佰峰, 陳建偉, 等. N18鋯合金沉淀相分布特征的研究. 稀有金屬材料與工程, 2011, 40(5):813

    Guo X C, Luan B F, Chen J W, et al. Distribution characteristics of precipitation of N18 zirconium alloy. Rare Met Mater Eng, 2011, 40(5): 813
    [3]
    Li X H, Feng X W, Wang S C, et al. Microstructure, texture and mechanical properties of extruded Mg?Zn?Zr Mg alloy profiles. Rare Met Mater Eng, 2014, 43(12): 2927 doi: 10.1016/S1875-5372(15)60035-2
    [4]
    彭倩, 劉彥章, 趙文金, 等. 熱軋溫度對N18新鋯合金板材織構的影響. 核動力工程, 2005, 26(1):65 doi: 10.3969/j.issn.0258-0926.2005.01.015

    Peng Q, Liu Y Z, Zhao W J, et al. Effect of hot-rolling temperature on the texture of N18 zirconium alloy plate. Nucl Power Eng, 2005, 26(1): 65 doi: 10.3969/j.issn.0258-0926.2005.01.015
    [5]
    李韻豪. 銅及銅合金塑性變形加工的感應加熱(上). 金屬加工(熱加工), 2016(7):60 doi: 10.3969/j.issn.1674-165X.2016.07.024

    Li Y H. Induction heating of copper and copper alloy plastic deformation processing (Ⅰ). Met Work, 2016(7): 60 doi: 10.3969/j.issn.1674-165X.2016.07.024
    [6]
    劉長勇, 張人佶, 顏永年, 等. 玻璃潤滑熱擠壓工藝的潤滑行為分析. 機械工程學報, 2011, 47(20):127

    Liu C Y, Zhang R J, Yan Y N, et al. Lubrication behavior of the glass lubricated hot extrusion process. J Mech Eng, 2011, 47(20): 127
    [7]
    楊鋒, 尉北玲, 王旭峰. 核級鋯合金研究現狀及我國核級鋯材發展方向. 金屬世界, 2016(3):24 doi: 10.3969/j.issn.1000-6826.2016.03.07

    Yang F, Wei B L, Wang X F. Research advance and future direction of nuclear graded zirconium alloy. Met World, 2016(3): 24 doi: 10.3969/j.issn.1000-6826.2016.03.07
    [8]
    薛利平, 鹿守理, 竇曉峰, 等. 金屬熱變形時組織演化的有限元模擬及性能預報. 北京科技大學學報, 2000, 22(1):34 doi: 10.3321/j.issn:1001-053X.2000.01.010

    Xue L P, Lu S L, Dou X F, et al. FE simulation of microstructure evolution and prediction of mechanical properties of hot deformed metals. J Univ Sci Technol Beijing, 2000, 22(1): 34 doi: 10.3321/j.issn:1001-053X.2000.01.010
    [9]
    Wang L L, Zhou J, Duszczyk J, et al. Friction in aluminium extrusion—Part 1: A review of friction testing techniques for aluminium extrusion. Tribol Int, 2012, 56: 89 doi: 10.1016/j.triboint.2012.01.012
    [10]
    閻軍, 鹿守理. 金屬熱變形時摩擦邊界條件的確定. 北京科技大學學報, 1999, 21(6):539 doi: 10.3321/j.issn:1001-053X.1999.06.008

    Yan J, Lu S L. Study on friction boundary condition in metal hot deformation. J Univ Sci Technol Beijing, 1999, 21(6): 539 doi: 10.3321/j.issn:1001-053X.1999.06.008
    [11]
    江國屏, 梁人棋, 黃健寧, 等. 圓環塑性壓縮試驗的標定曲線. 鍛壓技術, 1981(3):7

    Jiang G P, Liang R Q, Huang J N, et al. The calibration curves for the ring compression test. Forg Stamp Technol, 1981(3): 7
    [12]
    倪嘉. 鋯合金型材擠壓數值模擬與工藝、模具結構優化[學位論文]. 北京: 北京科技大學, 2019

    Ni J. Numerical Simulation and Extrusion Process, Die Structure Optimization of Zircaloy-4 Alloy Profile [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [13]
    Li L X, Peng D S, Liu J A, et al. An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test. J Mater Process Technol, 2000, 102(1-3): 138 doi: 10.1016/S0924-0136(99)00415-X
    [14]
    天津市工業展覽館二硫化鉬小組. 新型固體潤滑材料, 二硫化鉬. 天津: 天津人民出版社, 1972

    Molybdenum Disulfide Group of Tianjin Industrial Exhibition Hall. New Solid Lubrication Material, Molybdenum Disulfide. Tianjin: Tianjin People’s Publishing House, 1972
    [15]
    李落星, 彭大暑, 劉振球. 玻璃或石墨潤滑劑在TC4合金高溫變形過程中的行為研究. 稀有金屬材料與工程, 2000, 29(4):239 doi: 10.3321/j.issn:1002-185X.2000.04.007

    Li L X, Peng D S, Liu Z Q. Study on the lubricities of glass and graphite in the deformation processing of the alloy TC4 at high temperatures. Rare Met Mater Eng, 2000, 29(4): 239 doi: 10.3321/j.issn:1002-185X.2000.04.007
    [16]
    陳惠釗. 黏度測量(修訂版). 北京: 中國計量出版社, 2003

    Chen H Z. Viscosity Measurement (Revision Ed). Beijing: China Metrology Publishing House, 2003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1658) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频