<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
QIN Fang, ZHANG Le-le, HUANG Song-hua, CHEN Geng. Shakedown analysis method for composites based on homogenization theory[J]. Chinese Journal of Engineering, 2019, 41(12): 1558-1566. doi: 10.13374/j.issn2095-9389.2019.01.06.001
Citation: QIN Fang, ZHANG Le-le, HUANG Song-hua, CHEN Geng. Shakedown analysis method for composites based on homogenization theory[J]. Chinese Journal of Engineering, 2019, 41(12): 1558-1566. doi: 10.13374/j.issn2095-9389.2019.01.06.001

Shakedown analysis method for composites based on homogenization theory

doi: 10.13374/j.issn2095-9389.2019.01.06.001
More Information
  • Corresponding author: E-mail: llzhang1@bjtu.edu.cn
  • Received Date: 2019-01-06
  • Publish Date: 2019-12-01
  • Direct methods of plastic analysis are widely used in composites analysis to determine material strength for safety assessment or lightweight optimization design. Multi-scale processing of periodic heterogeneous composite material is needed due to its existing of microstructure. The standard method is to determine the macroscopic properties from the calculation results of microcosmic representative volume elements (RVEs) by using the homogenization theory. However, in current practice, there are some disadvantages of transforming the micro strain domain to the macro stress shakedown domain when considering multiple external loads. The domain cannot fully demonstrate the shakedown condition, and it is impossible to evaluate a known loading combination only from the knowledge of whether the load leads to the shakedown state. To overcome this disadvantage, a new comprehensive approach was proposed to enhance endurance limit strength of composites under variable loads for long term. Considering the example of in-plane strength analysis, for microcosmic RVEs, a new set of boundary condition was defined in the form of uniform strain. The boundary condition was derived from the elastic response under unit loads by using Hook’s law and stiffness matrix. The resulting elastic stress field was used later for plastic shakedown analysis. Based on the lower bound theorem of plastic mechanics, optimization programming for load factor was performed, and after proper mathematical reformulation, the conic quadratic optimization problem could be solved efficiently. Macro-stress shakedown domain can be obtained after scale-transformation of the RVE results. The bases of this stress domain are unidirectional stress in geometry space. The stress amplitude of a structure can be evaluated by this domain for determining the shakedown state in a simple and practical manner. Further, changes in the boundary condition of RVE do not affect the limit and elastic analysis. Finally, few numerical examples were presented for verification and illustration. This approach can be expanded to three dimensions and employed for more complex structures.

     

  • loading
  • [1]
    鄭曉霞, 鄭錫濤, 緱林虎. 多尺度方法在復合材料力學分析中的研究進展. 力學進展, 2010, 40(1):41 doi: 10.6052/1000-0992-2010-1-J2008-104

    Zheng X X, Zheng X T, Gou L H. The research progress on multiscale method for the mechanical analysis of composites. Adv Mech, 2010, 40(1): 41 doi: 10.6052/1000-0992-2010-1-J2008-104
    [2]
    Suquet P M. Discontinuities and plasticity//Nonsmooth Mechanics and Applications. Vienna: Springer, 1988: 279
    [3]
    Weichert D, Hachemi A, Schwabe F. Application of shakedown analysis to the plastic design of composites. Arch Appl Mech, 1999, 69(9-10): 623 doi: 10.1007/s004190050247
    [4]
    Weichert D, Hachemi A, Schwabe F. Shakedown analysis of composites. Mech Res Commun, 1999, 26(3): 309 doi: 10.1016/S0093-6413(99)00029-4
    [5]
    Ponter A R S, Leckie F A. On the behaviour of metal matrix composites subjected to cyclic thermal loading. J Mech Phys Solids, 1998, 46(11): 2183 doi: 10.1016/S0022-5096(98)00074-X
    [6]
    Hachemi A, Chen M, Chen G, et al. Limit state of structures made of heterogeneous materials. Int J Plast, 2014, 63: 124 doi: 10.1016/j.ijplas.2014.03.019
    [7]
    Chen G, Bezold A, Broeckmann C, et al. On the size of the representative volume element used for the strength prediction: A statistical survey applied to the particulate reinforce metal matrix composites (PRMMCs)//Advances in Direct Methods for Materials and Structures. Cham: Springer, 2018: 51
    [8]
    Chen G, Bezold A, Broeckmann C, et al. On the statistical determination of strength of random heterogeneous materials. Compos Struct, 2016, 149: 220 doi: 10.1016/j.compstruct.2016.04.023
    [9]
    Zhang J, Oueslati A, Shen W Q, et al. Shakedown of porous material with Drucker-Prager dilatant matrix under general cyclic loadings. Composite Structures, 2019, 220: 566 doi: 10.1016/j.compstruct.2019.03.029
    [10]
    李華祥, 劉應華, 馮西橋, 等. 基于均勻化理論韌性復合材料塑性極限分析. 力學學報, 2002, 34(4):550 doi: 10.3321/j.issn:0459-1879.2002.04.009

    Li H X, Liu Y H, Feng X Q, et al. Plastic limit analysis of ductile composites based on homogenization theory. Acta Mech Sin, 2002, 34(4): 550 doi: 10.3321/j.issn:0459-1879.2002.04.009
    [11]
    張宏濤, 劉應華, 徐秉業. 周期性韌性復合材料的安定下限分析. 清華大學學報: 自然科學版, 2005, 45(2):267

    Zhang H T, Liu Y H, Xu B Y. Lower bound shakedown analysis of periodic ductile composites. J Tsinghua Univ Sci Technol, 2005, 45(2): 267
    [12]
    秦方, 張樂樂, 陳敏, 等. 正交各向異性材料塑性極限與安定的下限分析. 清華大學學報: 自然科學版, 2018, 58(11):966

    Qin F, Zhang L L, Chen M, et al. Lower bound analysis of plastic limit and shakedown state of orthotropic materials. J Tsinghua Univ Sci Technol, 2018, 58(11): 966
    [13]
    Chen S S, Liu Y H, Cen Z Z. Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng, 2008, 197(45-48): 3911 doi: 10.1016/j.cma.2008.03.009
    [14]
    Simon J W, Weichert D. Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng, 2011, 200(41-44): 2828 doi: 10.1016/j.cma.2011.05.006
    [15]
    Carvelli V, Cen Z Z, Liu Y, et al. Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech, 1999, 69(9-10): 751 doi: 10.1007/s004190050254
    [16]
    黃春芳, 肖加余, 黃展鴻, 等. 薄鋪層復合材料薄壁管軸壓屈曲行為研究. 工程科學學報, 2018, 40(07):857

    Huang C F, Xiao J Y, Huang Z H, et al. Buckling of composite cylindrical shells fabricated using thin-ply under axial compression. Chin J Eng, 2018, 40(07): 857
    [17]
    王躍全, 童明波, 朱書華. 三維復合材料層合板漸進損傷非線性分析模型. 復合材料學報, 2009, 26(5):159 doi: 10.3321/j.issn:1000-3851.2009.05.026

    Wang Y Q, Tong M B, Zhu S H. 3D nonlinear progressive damage analysis model for composite laminates. Acta Mater Compos Sin, 2009, 26(5): 159 doi: 10.3321/j.issn:1000-3851.2009.05.026
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article views (1742) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频