<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
WANG Yu-dong, YANG Kai, ZHANG Ming-jie, LI Jian-ling, GAO Fei, LIU Hao, GENG Meng-meng. Fabrication of hollow lithium titanate material by electrospinning[J]. Chinese Journal of Engineering, 2019, 41(1): 111-116. doi: 10.13374/j.issn2095-9389.2019.01.012
Citation: WANG Yu-dong, YANG Kai, ZHANG Ming-jie, LI Jian-ling, GAO Fei, LIU Hao, GENG Meng-meng. Fabrication of hollow lithium titanate material by electrospinning[J]. Chinese Journal of Engineering, 2019, 41(1): 111-116. doi: 10.13374/j.issn2095-9389.2019.01.012

Fabrication of hollow lithium titanate material by electrospinning

doi: 10.13374/j.issn2095-9389.2019.01.012
More Information
  • Lithium titanate (Li4Ti5O12, LTO) is an important material to be used as an anode for LIBs (Li+ ion battery). LTO is a zero-strain material (i.e., no structural change occurs during Li insertion/extraction). Although LTO is a very safe material that can be used as an anode material in high and low temperature environment, its rate capability is compromised by its low electronic conductivity and poor Li+ diffusion coefficient. In the recent years, considerable research around the world has focused on improving LTO rate performance. Efforts to achieve better electrical conduction between LTO particles have included LTO particle size control, conductive-material surface coatings, and alien ion doping. However, in this study electrochemical properties were improved by changing the morphology of LTO. Based on traditional electrospinning technology, LTO fibers with a hollow structure were produced using a nested coaxial nozzle modified from the conventional spinning nozzle and coaxial cospinning with two different solutions. A comparison of this results with those of solid LTO prepared by traditional electrospinning technology demonstrates that hollow LTO is characterized by uniform particle size and no agglomeration, along with an obvious hollow structure, clear crystal lattice stripes, and good crystallization property. The specific surface of this hollow LTO is 1.3 times than its solid counterpart. This morphological change greatly improves the electrochemical performance of the material. Although the discharge specific capacities of both the solid and hollow LTO are close to the theoretical value for small ratios, the hollow LTO is superior to its solid counterpart at 20C. The discharge specific capacity of the hollow LTO can reach 130 mA·h·g-1 at 20C, and after 200 cycles, its capacity retention ratio remains at 98%, which suggests good stability. Cyclic voltammetry and AC impedance curves also show that the hollow structure reduces the degree of polarization and the electrochemical reaction impedance of LTO, which makes LTO more conducive to electrochemical reaction.

     

  • loading
  • [1]
    劉永相, 侯興哲, 李林霞, 等. 鈦酸鋰電池在城市公交電動產業化中的應用. 智能電網, 2014, 4: 280

    Liu Y X, Hou X Z, Li L X, et al. Application of lithium titanate battery in industrialization of urban transit electric vehicles. Smart Grid, 2014, 4: 280
    [2]
    黃任飛. 鈦酸鋰電池在兆瓦級儲能系統中的應用分析. 儲能科學與技術, 2015, 4(3): 290 doi: 10.3969/j.issn.2095-4239.2015.03.008

    Huang R F. Analysis for the applications of lithium titanate battery in the MW-class energy storage systems. Energy Storage Sci Technol, 2015, 4(3): 290 doi: 10.3969/j.issn.2095-4239.2015.03.008
    [3]
    倪海芳, 范麗珍. 尖晶石型Li4Ti5O12負極材料的研究進展. 硅酸鹽學報, 2012, 40(4): 548 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201204016.htm

    Ni H F, Fan L Z. Developments on spinel Li4Ti5O12 as anode material. J Chin Ceram Soc, 2012, 40(4): 548 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201204016.htm
    [4]
    Li Z Y, Li J L, Zhao Y G, et al. Influence of cooling mode on the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Ionics, 2016, 22(6): 789 doi: 10.1007/s11581-015-1610-0
    [5]
    Deptu?a A, ?ada W, Olczak T, et al. Preparation of lithium titanate by sol-gel method. Nukleonika, 2001, 46(3): 95
    [6]
    張遙遙, 王丹, 張春明, 等. 水熱法制備鋰離子電池負極材料Li4Ti5O12研究進展. 電源技術, 2014, 38(11): 2202 doi: 10.3969/j.issn.1002-087X.2014.11.070

    Zhang Y Y, Wang D, Zhang C M, et al. Research progress on Li4Ti5O12 as anode material for Li-ion battery synthesized by hydrothermal method. Chin J Power Sources, 2014, 38(11): 2202 doi: 10.3969/j.issn.1002-087X.2014.11.070
    [7]
    劉微, 張妮, 白陽, 等. 微波輔助溶膠-凝膠法合成鋰離子電池負極材料Li4Ti5O12. 硅酸鹽學報, 2010, 38(12): 2279 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201012014.htm

    Liu W, Zhang N, Bai Y, et al. Synthesis of lithium-ion battery anode material Li4Ti5O12 by the microwave assisted sol-gel method. J Chin Ceram Soc, 2010, 38(12): 2279 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201012014.htm
    [8]
    Gong X, Yang J L, Jiang Y L, et al. Application of electrospinning technique in power lithium-ion batteries. Prog Chem, 2014, 26(1): 41 http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXJZ201401005.htm
    [9]
    李學良, 張楊, 尤亞華, 等. 離子熱法制備Li4Ti5O12負極材料及其電化學性能. 硅酸鹽學報, 2013, 41(1): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201301003.htm

    Li X L, Zhang Y, You Y H, et al. Ionothermal synthesis and electrochemical properties of Li4Ti5O12 anode material. J Chin Ceram Soc, 2013, 41(1): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201301003.htm
    [10]
    Haridas A K, Sharma C S, Rao T N. Electrochemical performance of lithium titanate submicron rods synthesized by sol-gel/electrospinning. Electroanalysis, 2014, 26(11): 2315 doi: 10.1002/elan.201400233
    [11]
    Yu Q, Wang M, Chen H. Fabrication of ordered TiO2 nanoribbon arrays by electrospinning. Mater Lett, 2010, 64(3): 428 doi: 10.1016/j.matlet.2009.11.039
    [12]
    張娓華, 劉呈坤, 孫潤軍, 等. 靜電紡參數對納米纖維直徑及定向性的影響. 合成纖維, 2011, 40(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201101010.htm

    Zhang W H, Liu C K, Sun R J, et al. Effect of electrospinning parameters on diameter and orientation of nanofiber. Synth Fiber China, 2011, 40(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201101010.htm
    [13]
    Cho Y, Lee S, Lee Y, et al. Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater, 2011, 1(5): 821 doi: 10.1002/aenm.201100239
    [14]
    Vaseashta A. Controlled formation of multiple Taylor cones in electrospinning process. Appl Phys Lett, 2007, 90(9): 093115-1 doi: 10.1063/1.2709958
    [15]
    Moghe A K, Gupta B S. Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev, 2008, 48(2): 353 doi: 10.1080/15583720802022257
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (977) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频