<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
ZHANG Hao, ZHANG Xin-yu. Preparation of modified porous steel slag/rubber composite materials and its properties[J]. Chinese Journal of Engineering, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009
Citation: ZHANG Hao, ZHANG Xin-yu. Preparation of modified porous steel slag/rubber composite materials and its properties[J]. Chinese Journal of Engineering, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009

Preparation of modified porous steel slag/rubber composite materials and its properties

doi: 10.13374/j.issn2095-9389.2019.01.009
More Information
  • Corresponding author: ZHANG Hao, E-mail: fengxu19821018@163.com
  • Received Date: 2017-12-22
  • Publish Date: 2019-01-01
  • High value-added utilization of solid wastes, such as the development of an inexpensive inorganic rubber filler, is one of the important approaches of sustainable development. Phosphoric acid, silane KH550, and steel slag were innovatively used to prepare modified porous steel slag, which partially replaced carbon black in this study. Modified porous steel slag was combined with carbon black, rubber, accelerator, sulfur, stearic acid, and zinc oxide to prepare a series of modified porous steel slag/rubber composite materials. This study investigated the mass ratios of phosphoric acid/steel slag, silane KH550/porous steel slag, accelerator/sulfur, and stearic acid/zinc oxide and the effect of the mass ratio of modified porous steel slag/carbon black on the mechanical properties of the prepared modified porous steel slag/rubber composite materials. At the same time, the influence mechanism was analyzed. The results indicate that the modified porous steel slag/rubber composites (the amounts of phosphoric acid, steel slag, silane KH550, carbon black, accelerator, sulfur, stearic acid, zinc oxide, and rubber are 1.2, 30, 0.3, 20, 0.8, 1.2, 0.8, 2.2, and 100 g, respectively) have good mechanical properties, with the tensile strength of 18.4 MPa, Shore A hardness of 68.8, and tearing strength of 44.6 kN·m-1. Phosphoric acid and silane KH550 can improve the pore and surface structures of steel slag. Appropriate ratios of accelerator/sulfur and stearic acid/zinc oxide can destroy the internal sulfur ring, which stabilizes the cross bond of rubber. Thus, a desirable package structure can be obtained by physically combining modified porous steel slag with rubber.

     

  • loading
  • [1]
    Sun P, Guo Z C. Sintering preparation of porous sound-absorbing materials from steel slag. Trans Nonferrous Met Soc China, 2015, 25(7): 2230 doi: 10.1016/S1003-6326(15)63865-1
    [2]
    Zhang Y J, Kang L, Liu L C. et al. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl Surf Sci, 2015, 331: 399 doi: 10.1016/j.apsusc.2015.01.090
    [3]
    Xiang L, Xiang Y, Wang Z G, et al. Influence of chemical additives on the formation of super-fine calcium carbonate. Powder Technol, 2002, 126(2): 129 doi: 10.1016/S0032-5910(02)00047-5
    [4]
    Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004
    [5]
    Binici H, Temiz H, Kose M M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr Build Mater, 2007, 21(5): 1122 doi: 10.1016/j.conbuildmat.2005.11.005
    [6]
    Makela M, Watkins G, Poykio R, et al. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability. J Hazard Mater, 2012, 207-208: 21 doi: 10.1016/j.jhazmat.2011.02.015
    [7]
    Saria L, Shimaoka T, Miyawaki K. Leaching of heavy metals in acid mine drainage. Waste Manage Res, 2006, 24(2): 134 doi: 10.1177/0734242X06063052
    [8]
    Navarro M C, Pérez-Sirvent C, Martínez-Sánchez M J, et al. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor, 2008, 96(2-3): 183 doi: 10.1016/j.gexplo.2007.04.011
    [9]
    Zhuang P, McBride M B, Xia H P, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ, 2009, 407(5): 1551 doi: 10.1016/j.scitotenv.2008.10.061
    [10]
    楊晉濤, 范宏, 卜志揚, 等. 蒙脫土填充補強丁苯橡膠及對橡膠硫化特性的影響. 復合材料學報, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008

    Yang J T, Fan H, Bu Z Y, et al. Montmorillonite reinforced SBR and effect on the vulcanization of rubber. Acta Mater Compos Sin, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008
    [11]
    Raza M A, Westwood A, Brown A, et al. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composite for thermal interface applications. Carbon, 2011, 49(13): 4269 doi: 10.1016/j.carbon.2011.06.002
    [12]
    Chen L, Lu L, Wu D J, et al. Slicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. Polym Compos, 2007, 28(4): 493 doi: 10.1002/pc.20323
    [13]
    李彩霞, 劉健, 任瑞晨. 粉煤灰改性及作橡膠補強填料機理研究. 非金屬礦, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm

    Li C X, Liu J, Ren R C. Study on fly ash modification and reinforce-reagent mechanism of rubber. Non-Metallic Mines, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm
    [14]
    楊昭, 張馨. 粉煤灰在天然橡膠中的應用初探. 技術與市場, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm

    Yang Z, Zhang X. Application of a preliminary study on fly ash in natural rubber. Technol Market, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm
    [15]
    唐忠鋒, 周小柳, 林海濤, 等. 漂珠/天然橡膠復合材料的力學性能研究. 非金屬礦, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm

    Tang Z F, Zhou X L, Lin H T, et al. Study on mechanical properties of cenosphere/caoutchouc composite materials. Non-Metallic Mines, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article views (1157) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频