<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
LI De-peng, DAI Wei, ZHAO Da-yong, HUANG Gang, MA Xiao-ping. Grinding process particle size modeling method using robust RVFLN-based ensemble learning[J]. Chinese Journal of Engineering, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007
Citation: LI De-peng, DAI Wei, ZHAO Da-yong, HUANG Gang, MA Xiao-ping. Grinding process particle size modeling method using robust RVFLN-based ensemble learning[J]. Chinese Journal of Engineering, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007

Grinding process particle size modeling method using robust RVFLN-based ensemble learning

doi: 10.13374/j.issn2095-9389.2019.01.007
More Information
  • Corresponding author: DAI Wei, E-mail: weidai@cumt.edu.cn
  • Received Date: 2018-07-07
  • Publish Date: 2019-01-01
  • As a key production quality index of grinding process, particle size is of great importance to closed-loop optimization and control. This is because controlling particle within a proper range can improve the concentrate grade, enhance the recovery rate of useful minerals, and reduce the loss of metal in the sorting operation; thus, the particle size determines the overall performance of the grinding process. In fact, it is not easy to optimize or control the practical industrial process because the optimal operation largely depends on a good measurement of particle size of grinding process; however, it is difficult to realize the real-time measurement of particle size because of limitations of economy or technique. Employing soft sensor techniques is necessary to solve the problem of particle size estimation, which is particularly important for the actual grinding processes. Considering that soft sensors are applicable in many fields, the data-driven soft sensor will be a useful tool for achieving particle size estimation. However, most of the iron ores processed in China are characterized by hematite with unstable properties, and the slurry particles exhibit magnetic agglomeration, giving rise to a large number of outliers in the collected data. In this case, there are gross errors in the particle size estimation model constructed based on the data and thus unreliable measurements. Meanwhile, the traditional feedforward neural networks have the disadvantages of slow convergence speed and easily fall into local minimum during the prediction process. A single model tends to lack superiority in sound generalization, and the performance of existing ensemble learning methods will be worse under outlier interference. Therefore, in this study, based on the improved random vector functional link networks (RVFLN), the Bagging algorithm is incorporated into an adaptive weighted data fusion technique to develop an ensemble learning method for particle size estimation of grinding processes. Experimental studies were first conducted through benchmark regression issues and then validated by the samples collected from an actual grinding process, indicating the effectiveness of the proposed method.

     

  • loading
  • [1]
    Chen X S, Li Q, Fei S M. Supervisory expert control for ball mill grinding circuits. Expert Syst Appl, 2008, 34(3): 1877 doi: 10.1016/j.eswa.2007.02.013
    [2]
    Zhou P, Dai W, Chai T Y. Multivariable disturbance observer based advanced feedback control design and its application to a grinding circuit. IEEE Trans Control Syst Technol, 2014, 22(4): 1474 doi: 10.1109/TCST.2013.2283239
    [3]
    Wang X L, Gui W H, Yang C H, et al. Wet grindability of an industrial ore and its breakage parameters estimation using population balances. Int J Miner Process, 2011, 98(1-2): 113 doi: 10.1016/j.minpro.2010.11.008
    [4]
    Meyer E J, Craig I K, The development of dynamic models for a dense medium separation circuit in coal beneficiation, Miner Eng, 2010, 23(10): 791 doi: 10.1016/j.mineng.2010.05.020
    [5]
    Sun Z, Wang H G, Zhang Z K. Soft sensing of overflow particle size distributions in hydrocyclones using a combined method. Tsinghua Sci Technol, 2008, 13(1): 47 doi: 10.1016/S1007-0214(08)70008-7
    [6]
    王新華, 桂衛華, 王雅琳, 等. 混合核函數支持向量機的磨礦粒度預測模型. 計算機工程與應用, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062

    Wang X H, Gui W H, Wang Y L, et al. Prediction modeling for particle size of grinding circuit of mixture kernels SVM. Comput Eng Appl, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062
    [7]
    Qiao J H, Chai T Y. Soft measurement model and its application in raw meal calcination process. J Process Control, 2012, 22(1): 344 doi: 10.1016/j.jprocont.2011.08.005
    [8]
    Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw, 1995, 6(6): 1320 doi: 10.1109/72.471375
    [9]
    Huang G B, Chen Y Q, Babri H A. Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw, 2000, 11(3): 799 doi: 10.1109/72.846750
    [10]
    張思源, 包燕平, 張超杰, 等. BP神經網絡IF鋼鋁耗的預測模型. 工程科學學報, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm

    Zhang S Y, Bao Y P, Zhang C J, et al. Prediction model of aluminum consumption with BP neural networks in IF steel production. Chin J Eng, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm
    [11]
    Pao Y H, Phillips S M, Sobajic D J. Neural-net computing and the intelligent control of systems. Int J Control, 1992, 56(2): 263 doi: 10.1080/00207179208934315
    [12]
    Scardapane S, Wang D H. Randomness in neural networks: An overview. WIREs Data Min Knowl Disc, 2017, 7(2): e1200 doi: 10.1002/widm.1200
    [13]
    Ditterrich T G. Machine learning research: four current direction. Artif Intell Mag, 1997, 4: 97 http://ci.nii.ac.jp/naid/10020896742
    [14]
    Kearns M J, Valiant L G. Learning Boolean Formulae or Finite Automata is as Hard as Factoring. Cambridge: Harvard University, Center for Research in Computing Technology, Aiken Computation Laboratory, 1988
    [15]
    Schapire R E. The strength of weak learnability. Mach Learn, 1990, 5(2): 197 doi: 10.1109/SFCS.1989.63451
    [16]
    Schwenk H, Bengio Y. Boosting neural networks. Neural Comput, 2000, 12(8): 1869 doi: 10.1162/089976600300015178
    [17]
    Martínez-Mu?oz G, Suárez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit, 2010, 43(1): 143 doi: 10.1016/j.patcog.2009.05.010
    [18]
    Dai W, Chai T Y, Yang S X. Data-driven optimization control for safety operation of hematite grinding process. IEEE Trans Ind Electron, 2015, 62(5): 2930 doi: 10.1109/TIE.2014.2362093
    [19]
    Dai W, Liu Q, Chai T Y. Particle size estimate of grinding processes using random vector functional link networks with improved robustness. Neurocomputing, 2015, 169: 361 doi: 10.1016/j.neucom.2014.08.098
    [20]
    Rao C R. Generalized Inverse of Matrices and its Applications. New York: Wiley, 1971
    [21]
    Wang D H, Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing, 2013, 102: 98 doi: 10.1016/j.neucom.2011.12.046
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1097) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频