Citation: | LI De-peng, DAI Wei, ZHAO Da-yong, HUANG Gang, MA Xiao-ping. Grinding process particle size modeling method using robust RVFLN-based ensemble learning[J]. Chinese Journal of Engineering, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007 |
[1] |
Chen X S, Li Q, Fei S M. Supervisory expert control for ball mill grinding circuits. Expert Syst Appl, 2008, 34(3): 1877 doi: 10.1016/j.eswa.2007.02.013
|
[2] |
Zhou P, Dai W, Chai T Y. Multivariable disturbance observer based advanced feedback control design and its application to a grinding circuit. IEEE Trans Control Syst Technol, 2014, 22(4): 1474 doi: 10.1109/TCST.2013.2283239
|
[3] |
Wang X L, Gui W H, Yang C H, et al. Wet grindability of an industrial ore and its breakage parameters estimation using population balances. Int J Miner Process, 2011, 98(1-2): 113 doi: 10.1016/j.minpro.2010.11.008
|
[4] |
Meyer E J, Craig I K, The development of dynamic models for a dense medium separation circuit in coal beneficiation, Miner Eng, 2010, 23(10): 791 doi: 10.1016/j.mineng.2010.05.020
|
[5] |
Sun Z, Wang H G, Zhang Z K. Soft sensing of overflow particle size distributions in hydrocyclones using a combined method. Tsinghua Sci Technol, 2008, 13(1): 47 doi: 10.1016/S1007-0214(08)70008-7
|
[6] |
王新華, 桂衛華, 王雅琳, 等. 混合核函數支持向量機的磨礦粒度預測模型. 計算機工程與應用, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062
Wang X H, Gui W H, Wang Y L, et al. Prediction modeling for particle size of grinding circuit of mixture kernels SVM. Comput Eng Appl, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062
|
[7] |
Qiao J H, Chai T Y. Soft measurement model and its application in raw meal calcination process. J Process Control, 2012, 22(1): 344 doi: 10.1016/j.jprocont.2011.08.005
|
[8] |
Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw, 1995, 6(6): 1320 doi: 10.1109/72.471375
|
[9] |
Huang G B, Chen Y Q, Babri H A. Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw, 2000, 11(3): 799 doi: 10.1109/72.846750
|
[10] |
張思源, 包燕平, 張超杰, 等. BP神經網絡IF鋼鋁耗的預測模型. 工程科學學報, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm
Zhang S Y, Bao Y P, Zhang C J, et al. Prediction model of aluminum consumption with BP neural networks in IF steel production. Chin J Eng, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm
|
[11] |
Pao Y H, Phillips S M, Sobajic D J. Neural-net computing and the intelligent control of systems. Int J Control, 1992, 56(2): 263 doi: 10.1080/00207179208934315
|
[12] |
Scardapane S, Wang D H. Randomness in neural networks: An overview. WIREs Data Min Knowl Disc, 2017, 7(2): e1200 doi: 10.1002/widm.1200
|
[13] |
Ditterrich T G. Machine learning research: four current direction. Artif Intell Mag, 1997, 4: 97 http://ci.nii.ac.jp/naid/10020896742
|
[14] |
Kearns M J, Valiant L G. Learning Boolean Formulae or Finite Automata is as Hard as Factoring. Cambridge: Harvard University, Center for Research in Computing Technology, Aiken Computation Laboratory, 1988
|
[15] |
Schapire R E. The strength of weak learnability. Mach Learn, 1990, 5(2): 197 doi: 10.1109/SFCS.1989.63451
|
[16] |
Schwenk H, Bengio Y. Boosting neural networks. Neural Comput, 2000, 12(8): 1869 doi: 10.1162/089976600300015178
|
[17] |
Martínez-Mu?oz G, Suárez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit, 2010, 43(1): 143 doi: 10.1016/j.patcog.2009.05.010
|
[18] |
Dai W, Chai T Y, Yang S X. Data-driven optimization control for safety operation of hematite grinding process. IEEE Trans Ind Electron, 2015, 62(5): 2930 doi: 10.1109/TIE.2014.2362093
|
[19] |
Dai W, Liu Q, Chai T Y. Particle size estimate of grinding processes using random vector functional link networks with improved robustness. Neurocomputing, 2015, 169: 361 doi: 10.1016/j.neucom.2014.08.098
|
[20] |
Rao C R. Generalized Inverse of Matrices and its Applications. New York: Wiley, 1971
|
[21] |
Wang D H, Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing, 2013, 102: 98 doi: 10.1016/j.neucom.2011.12.046
|