<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
WEI Ding-yi, DU Cui-feng, LI Yan-xin, ZHANG Lian-fu. Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste[J]. Chinese Journal of Engineering, 2019, 41(1): 53-59. doi: 10.13374/j.issn2095-9389.2019.01.005
Citation: WEI Ding-yi, DU Cui-feng, LI Yan-xin, ZHANG Lian-fu. Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste[J]. Chinese Journal of Engineering, 2019, 41(1): 53-59. doi: 10.13374/j.issn2095-9389.2019.01.005

Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste

doi: 10.13374/j.issn2095-9389.2019.01.005
More Information
  • Corresponding author: LI Yan-xin, E-mail: wdy103@yeah.net
  • Received Date: 2017-12-29
  • Publish Date: 2019-01-01
  • The purpose of this study was to reduce the loss of raw material calcium in the preparation of calcium silicate board and improve the synergistic utilization efficiency of solid waste. This test used a carbide slag-coal-based solid waste gelling system as the raw material to develop high-strength pure solid waste calcium silicate board. The main mineral components produced in the calcium silicate board and the variation in calcium silicate board strength with different proportioning were analyzed using thermogravimetry-differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD) test. The results show that the use of carbide slag completely substitutes cement. Fly ash and silica fume were mixed in mass ratio of 1:1 to prepare a mixed gelling system. Finally, the tobago mullite pure solid-waste calcium silicate template could be made with a water-cement ratio of 0.3. When silica fume was added in the mass percent of 0-10%, the bending strength of the template strengthened. Flexural strength of the calcium silicate board reached maximum when the amount of silica fume was 10%. Here, raw material particles composed of various dimensions were fully mixed. Also, crystals and hydrated gels closely interacted. Thus, the mechanical properties of the calcium silicate board significantly improved. The bending strength of the calcium silicate board tends to increase first, and then decrease with increasing NaOH dosage. The surface of the calcium silicate board was smooth when the mass percent of NaOH was 4% and mechanical strength reached a maximum of 11.8 MPa. This proved to be the optimum amount of added NaOH. The hydration reaction of the gelling system can achieve the best stimulating effect when 4% NaOH is added using scanning electron microscopy analysis. Moreover, the microstructure of material billets has an important impact on the final mechanical properties. However, the mechanical strength of the pre-cured calcium silicate board is not decisive of the final mechanical properties. The internal hydration gel number, shape, and connection are linked to each other inside the calcium silicate board; this is the key factor in determining the final mechanical properties of the calcium silicate board.

     

  • loading
  • [1]
    Hamilton A, Hall C. Physicochemical characterization of a hydrated calcium silicate board material. J Build Phys, 2005, 29(1): 9 doi: 10.1177/1744259105053280
    [2]
    Lin S H, Pan C L, Hsu W T. Monotonic and cyclic loading tests for cold-formed steel wall frames sheathed with calcium silicate board. Thin-Walled Struct, 2014, 74: 49 doi: 10.1016/j.tws.2013.09.011
    [3]
    Nithyadharan M, Kalyanaraman V. Experimental study of screw connections in CFS-calcium silicate board wall panels. Thin-Walled Struct, 2011, 49(6): 724 doi: 10.1016/j.tws.2011.01.004
    [4]
    劉曉婷, 王寶冬, 肖永豐, 等. 粉煤灰提鋁殘渣制備硅酸鈣板的工藝優化研究. 新型建筑材料, 2015, 42(1): 83 doi: 10.3969/j.issn.1001-702X.2015.01.022

    Liu X T, Wang B D, Xiao Y F, et al. Study of preparation process optimization of calcium silicate board by using JMP. New Build Mater, 2015, 42(1): 83 doi: 10.3969/j.issn.1001-702X.2015.01.022
    [5]
    梁興榮, 張英英, 向興, 等. 硅藻土制備硅酸鈣板的研究. 中國非金屬礦工業導刊, 2014(5): 15 doi: 10.3969/j.issn.1007-9386.2014.05.005

    Liang X R, Zhang Y Y, Xiang X, et al. Preparation of calcium silicate board by using diatomite. China Nonmetallic Min Ind, 2014(5): 15 doi: 10.3969/j.issn.1007-9386.2014.05.005
    [6]
    梁興榮, 薛俊, 曹宏. 磷渣-磷尾礦制備硅酸鈣板的研究. 混凝土與水泥制品, 2016(3): 87 doi: 10.3969/j.issn.1000-4637.2016.03.020

    Liang X R, Xue J, Cao H. Study of calcium silicate board prepared by phosphorus slag-phosphorus tailings. China Concr Cem Prod, 2016(3): 87 doi: 10.3969/j.issn.1000-4637.2016.03.020
    [7]
    王玉平, 童光慶, 馮啟明. 纖維水鎂石增強硅酸鈣板的研究. 新型建筑材料, 2003(6): 8 doi: 10.3969/j.issn.1001-702X.2003.06.004

    Wang Y P, Tong G Q, Feng Q M. Study on calcium silicate board reinforced with fiber brucite. New Build Mater, 2003(6): 8 doi: 10.3969/j.issn.1001-702X.2003.06.004
    [8]
    歐陽東, 易超. 利用高嶺土下腳料制備纖維硅酸鈣板的實驗研究. 硅酸鹽通報, 2013, 32(10): 1945 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310003.htm

    Ouyang D, Yi C. Experimental study on the preparation of fiber calcium silicate board from kaolin scraps. Bull Chin Ceram Soci, 2013, 32(10): 1945 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310003.htm
    [9]
    歐陽東, 易超. 利用陶瓷拋光渣制備纖維增強硅酸鈣板的試驗研究. 硅酸鹽通報, 2014, 33(2): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402045.htm

    Ouyang D, Yi C. Experimental study on the preparation of fiber reinforced calcium silicate board with ceramic polished slag. Bull Chin Ceram Soc, 2014, 33(2): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402045.htm
    [10]
    戰佳宇, 楊飛華, 耿春雷, 等. 鉬尾礦機械活化處理及對硅酸鈣板性能的影響. 混凝土與水泥制品, 2017(6): 56 doi: 10.3969/j.issn.1000-4637.2017.06.014

    Zhan J Y, Yang F H, Geng C L, et al. Mechanical activation treatment of molybdenum tailings and influence of molybdenum tailings on performance of calcium silicate boards. China Concr Cem Prod, 2017(6): 56 doi: 10.3969/j.issn.1000-4637.2017.06.014
    [11]
    戴民, 王羽, 魏征, 等. 硅藻土基調濕板材的水熱合成試驗研究. 硅酸鹽通報, 2016, 35(1): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601041.htm

    Dai M, Wang Y, Wei Z, et al. Preparation and properties of humidity controlling board based on diatomaceous earth. Bull Chin Ceram Soc, 2016, 35(1): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601041.htm
    [12]
    李彥鑫, 曹永丹, 張金山, 等. 我國硅灰的綜合利用現狀及存在問題淺析. 應用化工, 2017, 46(10): 2031 doi: 10.3969/j.issn.1671-3206.2017.10.041

    Li Y X, Cao Y D, Zhang J S, et al. Current situation of comprehensive utilization of silica fume in China and analysis of existing problems. Appl Chem Ind, 2017, 46(10): 2031 doi: 10.3969/j.issn.1671-3206.2017.10.041
    [13]
    李瀅. 礦物摻合料在水泥砂漿中的填充機理及試驗研究. 河南科學, 2013, 31(1): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201301025.htm

    Li Y. Mechanism and test of mineral admixture filling in cement mortar. Henan Sci, 2013, 31(1): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201301025.htm
    [14]
    徐子芳, 楊政, 張娟, 等. 污泥-高鈣煤系廢物制備地聚合物的技術與性能. 復合材料學報, 2013, 30(5): 113 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201305018.htm

    Xu Z F, Yang Z, Zhang J, et al. Preparation technology and properties of sludge-high calcium coal waste geopolymer. Acta Mater Compos Sin, 2013, 30(5): 113 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201305018.htm
    [15]
    侯云芬, 王棟民, 李俏, 等. 水玻璃性能對粉煤灰基礦物聚合物的影響. 硅酸鹽學報, 2008, 36(1): 61 doi: 10.3321/j.issn:0454-5648.2008.01.013

    Hou Y F, Wang D M, Li Q, et al. Effect of water glass performance on fly ash-based geopolymers. J Chin Ceram Soc, 2008, 36(1): 61 doi: 10.3321/j.issn:0454-5648.2008.01.013
    [16]
    陳延信, 吳峰, 胡亞茹. 提高粉體堆積密度的理論與實驗研究. 煤炭轉化, 2012, 35(1): 37 doi: 10.3969/j.issn.1004-4248.2012.01.010

    Chen Y X, Wu F, Hu Y R. Theoretical and experimental analysis of improving the packing density of powder. Coal Convers, 2012, 35(1): 37 doi: 10.3969/j.issn.1004-4248.2012.01.010
    [17]
    聶軼苗, 劉淑賢, 張晉霞, 等. 粉煤灰的活性研究及進展. 粉煤灰綜合利用, 2013(3): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201303015.htm

    Nie Y M, Liu S X, Zhang J X, et al. The research progress and developing prospect of fly ash activity. Fly Ash Comprehens Utiliz, 2013(3): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201303015.htm
    [18]
    喬春雨, 倪文, 王長龍. 四種硅酸鹽礦物的蒸壓反應活性. 北京科技大學學報, 2014, 36(6): 736 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406005.htm

    Qiao C Y, Ni W, Wang C L. Autoclaving reaction activity of four kinds of silicate minerals. J Univ Sci Technol Beijing, 2014, 36(6): 736 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406005.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (854) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频