<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
WEN Guang-hua, YANG Chang-lin, TANG Ping. Research overview of formation and heat transfer of slag film in mold during continuous casting[J]. Chinese Journal of Engineering, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002
Citation: WEN Guang-hua, YANG Chang-lin, TANG Ping. Research overview of formation and heat transfer of slag film in mold during continuous casting[J]. Chinese Journal of Engineering, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002

Research overview of formation and heat transfer of slag film in mold during continuous casting

doi: 10.13374/j.issn2095-9389.2019.01.002
More Information
  • Corresponding author: WEN Guang-hua, E-mail: wengh@cqu.edu.cn
  • Received Date: 2017-12-28
  • Publish Date: 2019-01-01
  • Mold flux, which plays an important role in continuous casting, occurs when liquid slag on top of the molten steel infiltrates the gap between the shell and mold. During this process, a liquid slag film forms on the shell side, whereas a solid slag film forms on the mold side. The behavior of the slag film between the shell and mold has a significant effect on the sequence casting and quality of the slab surface. To investigate the in-mold behavior and heat transfer of slag film, researchers have simulated the formation of slag film in the laboratory. Measurements and theoretical calculations have been performed to study the heat transfer of slag film. In this paper, the experimental methods used to simulate the formation of slag film were described and the research related to heat transfer in slag film was summarized, including the interfacial thermal resistance, the thermal conductivity of the mold flux, radiative heat transfer, and optical properties of the slag film. The issues related to the formation and heat transfer of slag film were also identified, that require further investigation. The results of recent studies indicate that the hot thermocouple technique could be applied to observe the formation of slag film, and the copper-finger dig test could be used to obtain samples for investigations related to the microstructure of solid slag film. The interfacial heat resistance is reported to be between 0.0002 and 0.002 m2·K·W-1. The thermal conductivity of mold flux at 800℃ ranges from 1.0-2.0 m2·K·W-1, and increases with increased temperature. Crystals in the solid slag film not only increase the interfacial heat resistance, but also decrease the radiative heat flux by reducing the reflectivity of slag film. Furthermore, due to the resulting change in optical properties, the addition of transition metal oxides and fine particles dispersed in slag film may also influence the radiative heat transfer through slag film.

     

  • loading
  • [1]
    Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmak Steelmak, 2005, 32(1): 26 doi: 10.1179/174328105X15788
    [2]
    Mills K C, Fox A B. The role of mould fluxes in continuous casting-So simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
    [3]
    Mills K C, Courtney L, Fox A B, et al. The use of thermal analysis in the determination of the crystalline fraction of slag films. Thermochim Acta, 2002, 391(1-2): 175 doi: 10.1016/S0040-6031(02)00175-2
    [4]
    張平, 魏慶成, 王家蔭, 等. 連鑄結晶器中保護渣渣膜傳熱的研究現狀. 鋼鐵研究學報, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm

    Zhang P, Wei Q C, Wang J Y, et al. Present state of research on heat transfer of casting flux film in continuous casting mold. J Iron Steel Res, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm
    [5]
    Meng Y, Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int, 2006, 46(5): 660 doi: 10.2355/isijinternational.46.660
    [6]
    Kashiwaya Y, Cicutti C E, Cramb A W, et al. Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization. ISIJ Int, 1998, 38(4): 348 doi: 10.2355/isijinternational.38.348
    [7]
    Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments. Metall Mater Trans B, 2013, 44(5): 1264 doi: 10.1007/s11663-013-9864-2
    [8]
    Li J, Wang W L, Wei J, et al. A kinetic study of the effect of Na2O on the crystallization behavior of mold fluxes for casting medium carbon steel. ISIJ Int, 2012, 52(12): 2220 doi: 10.2355/isijinternational.52.2220
    [9]
    Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on the crystallization behavior of lime-aliminum-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
    [10]
    Gao J X, Wen G H, Sun Q H, et al. The influence of Na2O on the solidification and crystallization behavior of CaO-SiO2-Al2O3 based mold flux. Metall Mater Trans B, 2015, 46(4): 1850 doi: 10.1007/s11663-015-0366-2
    [11]
    Wen G H, Tang P, Yang B, et al. Simulation and characterization on heat transfer through mould slag film. ISIJ Int, 2012, 52(7): 1179 doi: 10.2355/isijinternational.52.1179
    [12]
    Wen G H, Zhu X B, Tang P, et al. Influence of raw material type on heat transfer and structure of mould slag. ISIJ Int, 2011, 51(7): 1028 doi: 10.2355/isijinternational.51.1028
    [13]
    Yang C L, Wen G H, Sun Q H, et al. Evolution of temperature and solid slag film during solidification of mold fluxes. Metall Mater Trans B, 2017, 48(2): 1292 doi: 10.1007/s11663-017-0917-9
    [14]
    Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367
    [15]
    Cho J, Shibata H, Emi T, et al. Thermal resistance at the interface between mold flux film and mold for continuous casting of steels. ISIJ Int, 1998, 38(5): 440 doi: 10.2355/isijinternational.38.440
    [16]
    Park J Y, Sohn Ⅱ. Evaluating the heat transfer phenomenon and the interfacial thermal resistance of mold flux using a copper disc mold simulator. Int J Heat Mass Transfer, 2017, 109: 1014 doi: 10.1016/j.ijheatmasstransfer.2017.02.092
    [17]
    Tsutsumi K, Nagasaka T, Hino M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int, 1999, 39(11): 1150 doi: 10.2355/isijinternational.39.1150
    [18]
    Shibata H, Kondo K, Suzuki M, et al. Thermal resistance between solidifying steel shell and continuous casting mold with intervening flux film. ISIJ Int, 1996, 36(Suppl): S179 doi: 10.2355/isijinternational.36.Suppl_S179
    [19]
    Long X, He S P, Wang Q, et al. Structure of solidified films of mold flux for peritectic steel. Metall Mater Trans B, 2017, 48(3): 1652 doi: 10.1007/s11663-017-0965-1
    [20]
    Mill K C. Structure and properties of slags used in the continuous casting of steel: Part 1 conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231
    [21]
    Lee D W, Kingery W D. Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc, 1960, 43(11): 594 doi: 10.1111/j.1151-2916.1960.tb13623.x
    [22]
    Anderson S P, Eggertson C. Thermal conductivity of powders used in continuous casting of steel. Ironmak Steelmak, 2015, 42(6): 456 doi: 10.1179/1743281214Y.0000000250
    [23]
    Susa M, Watanabe M, Ozawa S, et al. Thermal conductivity of CaO-SiO2-Al2O3 glassy slags: its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak Steelmak, 2007, 34(2): 124 doi: 10.1179/174328107X165672
    [24]
    Ozawa S, Susa M. Effect of Na2O additions on thermal conductivities of CaO-SiO2 slags. Ironmak Steelmak, 2005, 32(6): 487 doi: 10.1179/174328105X48179
    [25]
    Hayashi M, Abas R A, Seetharaman S. Effect of crystallinity on thermal diffusivities of mould fluxes for the continuous casting of steels. ISIJ Int, 2004, 44(4): 691 doi: 10.2355/isijinternational.44.691
    [26]
    Waseda Y, Masuda M, Watanabe K, et al. Thermal diffusivitites of continuous casting powders for steel at high temperature. High Temp Mater Processes, 1994, 13(4): 267 doi: 10.1515/HTMP.1994.13.4.267
    [27]
    Wang W L, Cramb A W. The observation of mold flux crystallization on radiative heat transfer. ISIJ Int, 2005, 45(12): 1864 doi: 10.2355/isijinternational.45.1864
    [28]
    Cho J, Shibata H, Emi T, et al. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ Int, 1998, 38(3): 268 doi: 10.2355/isijinternational.38.268
    [29]
    Diao J, Xie B, Wang N H, et al. Effect of transition metal oxides on radiative heat transfer through mold flux film in continuous casting of steel. ISIJ Int, 2007, 47(9): 1294 doi: 10.2355/isijinternational.47.1294
    [30]
    Diao J, Xie B, Xiao J P, et al. Radiative heat transfer in transition metal oxides contained in mold fluxes. ISIJ Int, 2009, 49(11): 1710 doi: 10.2355/isijinternational.49.1710
    [31]
    刁江, 謝兵. 基于FTIR和XRD的降低連鑄保護渣紅外輻射傳熱研究. 光譜學與光譜分析, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04

    Diao J, Xie B. Research on reducing mold flux's radiative heat transfer based on FTIR and XRD. Spectrosc Spect Anal, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04
    [32]
    Susa M, Kushimoto A, Toyota H, et al. Effects of both crystallization and iron oxides on the radiative heat transfer in mould fluxes. ISIJ Int, 2009, 49(11): 1722 doi: 10.2355/isijinternational.49.1722
    [33]
    Susa M, Kushimoto A, Endo R, et al. Controllability of radiative heat flux across mould flux films by cuspidine grain size. ISIJ Int, 2011, 51(10): 1587 doi: 10.2355/isijinternational.51.1587
    [34]
    Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 1995, 34(15): 2765 doi: 10.1364/AO.34.002765
    [35]
    Yoon D W, Cho J W, Kim S H. Scattering effect of iron metallic particles on the extinction coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses. Metall Mater Trans B, 2016, 47(5): 2785 doi: 10.1007/s11663-016-0765-z
    [36]
    Yang C L, Wen G H, Zhu X F, et al. In situ observation and numerical simulation of bubble behavior in CaO-SiO2 based slag during isothermal and nonisothermal processes. J Non-Cryst Solids, 2017, 464: 56 doi: 10.1016/j.jnoncrysol.2017.03.028
    [37]
    Rousseau B, Meneses D D S, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media. Int J Therm Sci, 2011, 50(2): 178 doi: 10.1016/j.ijthermalsci.2010.10.001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (1115) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频