<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue S1
Dec.  2018
Turn off MathJax
Article Contents
DUAN Sheng-chao, GUO Han-jie, SHI Xiao, GUO Jing, LI Bin, HAN Shao-wei, YANG Wen-sheng. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009
Citation: DUAN Sheng-chao, GUO Han-jie, SHI Xiao, GUO Jing, LI Bin, HAN Shao-wei, YANG Wen-sheng. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009

Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process

doi: 10.13374/j.issn2095-9389.2018.s1.009
  • Received Date: 2018-02-03
    Available Online: 2023-07-18
  • Inconel 718, a precipitation strengthening nickel-based superalloy, is widely used in aerospace and other high-temperature process industries because of its adequate strength, ductility, and good workability.The increasing demand for alloys with remarkable comprehensive performance necessitates the development of alloys with highly uniform microstructures and highly homogeneous composition;therefore, electroslag remelting (ESR) has attracted much attention in metallurgical circles.However, strong chemical reactions, such as (Al2O3) +[Ti]= (Ti O2) +[Al], usually occur at the electrode-slag interface (ESI) or the droplet-slag interface (DSI) and the metal pool-slag interface (MSI) ;therefore, the concentrations of Al and Ti cannot be maintained within specifications, or the elements cannot be uniformly distributed along the height of the ingots during the ESR process.Consequently, mechanical property deteriorates and the production cost of nickel-based alloy increases.To overcome these issues, in this study, a thermodynamic model for calculating equilibrium content of Al and Ti in a nickel-based alloy during ESR was developed based on the ion and molecule coexistence theory (IMCT) .The chemical composition of slags plays a key role in the physicochemical properties of slags and controls the loss of alloying element during ESR process.Therefore, the respective relations between the activity and activity ratio of individual slag components with chemical composition of Ca O-Si O2-MgO-Fe O-Al2O3-Ti O2-Ca F2slag were studied.Furthermore, effect of the slag composition on the equilibrium content of Al and Ti in Inconel 718 superalloy under various metallurgical temperatures during ESR was investigated.The results indicate that the equilibrium content of Al increases with increasing temperature, however, the equilibrium content of Ti decreases.MgO and Ca F2have little influence on the control of the loss of active alloy elements.

     

  • loading
  • [1]
    Rahman M, Seah W K H, Teo T T. The machinability of Inconel718. J Mater Process Technol, 1997, 63 (1-3) :199
    [2]
    Du J H, Lu X D, Deng Q, et al. Progress in the research and manufacture of GH4169 alloy. J Iron Steel Res Int, 2015, 22 (8) :657
    [3]
    Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy. Acta Metall Sin, 2016, 52 (10) :1259 (劉永長, 郭倩穎, 李沖, 等. Inconel 718高溫合金中析出相演變研究進展.金屬學報, 2016, 52 (10) :1259)
    [4]
    Wang L H, Liu Z L, Liu X Q, et al. Effect of Al and Ti contents on the microstructure and solidification behavior of cast Inconel718. J Mater Sci Eng, 2016, 34 (2) :242 (王立紅, 劉子利, 劉希琴, 等. Al、Ti含量對Inconel 718合金鑄造組織和凝固行為的影響.材料科學與工程學報, 2016, 34 (2) :242)
    [5]
    Xu Y L, Zhang L, Li J, et al. Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy. Mater Sci Eng A, 2012, 544:48
    [6]
    Xie X S, Dong J X, Chen W, et al. Investigation on modified nickel-base superalloys with combined precipitation ofγ″andγ'.Trans Met Heat Treat, 1997, 18 (3) :37 (謝錫善, 董建新, 陳衛, 等.γ″和γ'復合析出強化新型鎳基高溫合金的研究.金屬熱處理學報, 1997, 18 (3) :37)
    [7]
    Collier J P, Wong S H, Tien J K, et al. The effect of varying Al, Ti, and Nb content on the phase stability of Inconel 718. Metall Trans A, 1988, 19 (7) :1657
    [8]
    Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR. ISIJ Int, 1992, 32 (5) :563
    [9]
    Vaish A K, Iyer G V R, De P K, et al. Electroslag remelting-Its status, mechanism and refining aspects in the production of quality steels. J Metall Mater Sci, 2000, 42 (1) :11
    [10]
    Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83 (5) :472
    [11]
    Reyes-Carmona F, Mitchell A. Deoxidation of ESR slags. ISIJ Int, 1992, 32 (4) :529
    [12]
    Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24 (7) :547
    [13]
    Wegman D D. Compositional control and oxide inclusion level comparison of pyrome@718 and A-286 ingots electroslag remelted under air vs argon atmosphere//Proceedings of the Sixth International Symposium on Superalloys Sponsored by the High Temperature Alloys Committee of the Metallurgical Society of AIME.Reading, 1988:427
    [14]
    Shi C B, Chen X C, Guo H J, et al. Control of Mg O·Al2O3spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44 (2) :378
    [15]
    Yan C, Li Y, Ma B Y, et al. Parameters optimising of the protective gas electroslag remelting. Mater Res Innovations, 2015, 19 (Suppl 1) :62
    [16]
    Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50 (9) :41 (李星, 耿鑫, 姜周華, 等.電渣重熔高溫合金渣系對冶金質量的影響.鋼鐵, 2015, 50 (9) :41)
    [17]
    Tommaney J W, Andolina P S, Buri R C. Method and Means of Reducing the Oxidization of Reactive Elements in an Electroslag Remelting Operation:US Patent, 4953177. 1990-8--28
    [18]
    Li Z B. Electroslag Metallurgy Theory and Practice. Beijing:Metallurgical Industry Press, 2010 (李正邦.電渣冶金的理論與實踐.北京:冶金工業出版社, 2010)
    [19]
    Melgaard D K, Williamson R L, Beaman J J. Controlling remelting processes for superalloys and aerospace Ti alloys. JOM, 1998, 50 (3) :13
    [20]
    Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with slags Al2O3--CaO--CaF2in the ESR process. J Vac Sci Technol, 1972, 9 (6) :1318
    [21]
    Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47 (2) :1465
    [22]
    Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process:description and verification. ISIJ Int, 2017, 57 (4) :713
    [23]
    Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-1 mass-transfer model. ISIJ Int, 2017, 57 (8) :1400
    [24]
    Guo H J. Metallurgical Physical Chemistry. 2nd Ed. Beijing:Metallurgical Industry Press, 2013 (郭漢杰.冶金物理化學. 2版.北京:冶金工業出版社, 2013)
    [25]
    Dashevskii V, Aleksandrov A, Kanevskii A, et al. Deoxidation equilibria of manganese, silicon, and aluminum in iron-nickelchromium melts. Metall Mater Trans B, 2016, 47 (3) :1839
    [26]
    Miki T, Hino M. Numerical analysis on Si deoxidation of molten Fe, Ni, Fe--Ni, Fe--Cr, Fe--Cr--Ni, Ni--Cu and Ni-Co alloys by quadratic formalism. ISIJ Int, 2005, 45 (12) :1848
    [27]
    Samuelsson E, Mitchell A. The thermochemistry of magnesium in nickel-base alloys:Part II. activity of magnesium. Metall Trans B, 1992, 23 (6) :805
    [28]
    Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions. Beijing:Metallurgical Industry Press, 2007 (張鑒.冶金熔體和溶液的計算熱力學.北京:冶金工業出版社, 2007)
    [29]
    Duan S C, Li C, Guo X L, et al. A thermodynamic model for calculating manganese distribution ratio between CaO-Si O2-Mg O--Fe O-MnO-Al2O3--Ti O2-CaF2ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmak Steelmak, 2018, 45 (7) :655
    [30]
    Duan S C, Guo X L, Guo H J, et al. A manganese distribution prediction model for CaO-SiO2-Fe O--Mg O--Mn O-Al2O3slags based on IMCT. Ironmak Steelmak, 2017, 44 (3) :168
    [31]
    Guo H J. Activity query. Chin J Eng, 2017, 39 (4) :502 (郭漢杰.“活度”質疑.工程科學學報, 2017, 39 (4) :502)
    [32]
    Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-2 control of titanium and aluminum content. ISIJ Int, 2017, 57 (8) :1410
    [33]
    Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8 (1) :5232
    [34]
    Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electro slag remelting (ESR) process. Metall Mater Trans B, 2017, 48 (4) :2147
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频