Citation: | YANG Qing, DUAN Hai-bin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001 |
[1] |
段海濱, 邱華鑫. 基于群體智能的無人機集群自主控制. 北京: 科學出版社, 2018
Duan H B, Qiu H X. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence. Beijing: Science Press, 2018
|
[2] |
邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊. 工程科學學報, 2017, 39(3):317
Qiu H X, Duan H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation. Chin J Eng, 2017, 39(3): 317
|
[3] |
彭志紅, 孫琳, 陳杰. 基于改進差分進化算法的無人機在線低空突防航跡規劃. 北京科技大學學報, 2012, 34(1):96
Peng Z H, Sun L, Chen J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. J Univ Sci Technol Beijing, 2012, 34(1): 96
|
[4] |
段海濱, 邱華鑫, 陳琳, 等. 無人機自主集群技術研究展望. 科技導報, 2018, 36(21):90
Duan H B, Qiu H X, Chen L, et al. Prospects on unmanned aerial vehicle autonomous swarm technology. Sci Technol Rev, 2018, 36(21): 90
|
[5] |
段海濱, 申燕凱, 王寅, 等. 2018年無人機領域熱點評述. 科技導報, 2019, 37(3):82
Duan H B, Shen Y K, Wang Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018. Sci Technol Rev, 2019, 37(3): 82
|
[6] |
Zhu T, Ling H F, He W X. A cooperative control approach of UAV autonomous formation and reconfiguration // Proceedings of 2018 Chinese Control And Decision Conference (CCDC). Shenyang, 2018: 2415
|
[7] |
宗群, 王丹丹, 邵士凱, 等. 多無人機協同編隊飛行控制研究現狀及發展. 哈爾濱工業大學學報, 2017, 49(3):1
Zong Q, Wang D D, Shao S K, et al. Research status and development of multi UAV coordinated formation flight control. J Harbin Inst Technol, 2017, 49(3): 1
|
[8] |
Askari A, Mortazavi M, Talebi H A. UAV formation control via the virtual structure approach. J Aerospace Eng, 2015, 28(1): 04014047 doi: 10.1061/(ASCE)AS.1943-5525.0000351
|
[9] |
Kownacki C. Multi-UAV flight using virtual structure combined with behavioral approach. Acta Mech Autom, 2016, 10(2): 92
|
[10] |
Kownacki C, Ambroziak L. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs. Aerospace Sci Technol, 2017, 68: 465 doi: 10.1016/j.ast.2017.05.040
|
[11] |
Mercado D A, Castro R, Lozano R. Quadrotors flight formation control using a leader-follower approach // Proceedings of 2013 European Control Conference (ECC). Zurich, 2013: 3858
|
[12] |
Saska M, Baca T, Thomas J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919 doi: 10.1007/s10514-016-9567-z
|
[13] |
N?geli T, Conte C, Domahidi A, et al. Environment-independent formation flight for micro aerial vehicles // Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 1141
|
[14] |
Ghamry K A, Dong Y Q, Kamel M A, et al. Real-time autonomous take-off, tracking and landing of UAV on a moving UGV platform // Proceedings of 2016 24th Mediterranean Conference on Control and Automation (MED). Athens, 2016: 1236
|
[15] |
Aghdam A S, Menhaj M B, Barazandeh F, et al. Cooperative load transport with movable load center of mass using multiple quadrotor UAVs // Proceedings of 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA). Qazvin, 2016: 23
|
[16] |
Shin J, Kim S, Suk J. Development of robust flocking control law for multiple UAVs using behavioral decentralized method. J Korean Soc Aeronautical Space Sci, 2015, 43(10): 859
|
[17] |
邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314
Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314
|
[18] |
Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE J Control Meas Syst Integration, 2015, 8(4): 285 doi: 10.9746/jcmsi.8.285
|
[19] |
V?lkl B, Fritz J. Relation between travel strategy and social organization of migrating birds with special consideration of formation flight in the northern bald ibis. Philos Trans R Soc London Ser B, 2017, 372(1727): 20160235 doi: 10.1098/rstb.2016.0235
|
[20] |
Ellis D H, Sladen W J L, Lishman W A, et al. Motorized migrations: the future or mere fantasy? BioScience, 2003, 53(3): 260 doi: 10.1641/0006-3568(2003)053[0260:MMTFOM]2.0.CO;2
|
[21] |
Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433: 513 doi: 10.1038/nature03236
|
[22] |
Simons A M. Many wrongs: the advantage of group navigation. Trends Ecol Evol, 2004, 19(9): 453 doi: 10.1016/j.tree.2004.07.001
|
[23] |
Lissaman P B S, Shollenberger C A. Formation flight of birds. Science, 1970, 168(3934): 1003 doi: 10.1126/science.168.3934.1003
|
[24] |
Duan H B, Qiu H X. Unmanned aerial vehicle distributed formation rotation control inspired by leader-follower reciprocation of migrant birds. IEEE Access, 2018, 6: 23431 doi: 10.1109/ACCESS.2018.2815664
|
[25] |
周子為, 段海濱, 范彥銘. 仿雁群行為機制的多無人機緊密編隊. 中國科學: 技術科學, 2017, 47(3):230
Zhou Z W, Duan H B, Fan Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese. Scientia Sinica Technologica, 2017, 47(3): 230
|
[26] |
Batbayar N, Takekawa J Y, Newman S H, et al. Migration strategies of Swan Geese Anser cygnoides from northeast Mongolia. Wildfowl, 2013, 61: 90
|
[27] |
Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behavior. Sci China Inf Sci, 2019, 62(1): 014201 doi: 10.1007/s11432-018-9587-0
|