<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
YANG Qing, DUAN Hai-bin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001
Citation: YANG Qing, DUAN Hai-bin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001

Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides

doi: 10.13374/j.issn2095-9389.2018.12.18.001
More Information
  • Corresponding author: E-mail:hbduan@buaa.edu.cn
  • Received Date: 2018-12-18
  • Publish Date: 2019-12-01
  • A coordinated autonomous control algorithm of unmanned aerial vehicle (UAV) swarm was proposed to reduce the complexity of UAV swarm control and solve the problem of changing topological structures in long-distance flight of UAV swarms efficiently. As the UAV swarms, especially fixed-wing ones, fly in a close formation, the influence and benefit of aerodynamic coupling between UAV in swarms should be considered. This paper focused on the application of biological swarm behavior mechanism, which can be used to form the shape of formation and adjust the topological structures of UAV swarm, and not the models of the aerodynamic coupling between UAVs in swarms. The distributed swarm control model of biological swarms based on the behavioral mechanism of Anser cygnoides formation was presented. A novel distributed swarm control system based on the behavioral mechanism of Anser cygnoides formation for low-cost UAVs was developed. Anser cygnoides is a common bird that lives in swarms. Its self-organizing network and formation topology behavior on the manner of migration exhibit high similarities with the application of UAV swarm. The paper designed an experimentation with a UAV swarm system using quadrotors, which communicate wirelessly using a Wi-Fi, to test and verify the feasibility of the proposed novel distributed swarm control algorithm. The field experimentation involved flying the five low-cost quadrotors in a " V” formation, and the position exchange of UAVs was achieved during the experimentation. The whole formation with the five quadrotors flew at a continuous speed during the whole experimentation, whereas the flight mode of fixed-wing UAV was simulated. The field experimentation shows that the formation mechanism of the migrant bird helps in realizing the distributed formation reconfiguration control of the UAV swarm and improves the robustness of the UAV swarm flight and verifies the feasibility of the novel distributed swarm control algorithm.

     

  • loading
  • [1]
    段海濱, 邱華鑫. 基于群體智能的無人機集群自主控制. 北京: 科學出版社, 2018

    Duan H B, Qiu H X. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence. Beijing: Science Press, 2018
    [2]
    邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊. 工程科學學報, 2017, 39(3):317

    Qiu H X, Duan H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation. Chin J Eng, 2017, 39(3): 317
    [3]
    彭志紅, 孫琳, 陳杰. 基于改進差分進化算法的無人機在線低空突防航跡規劃. 北京科技大學學報, 2012, 34(1):96

    Peng Z H, Sun L, Chen J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. J Univ Sci Technol Beijing, 2012, 34(1): 96
    [4]
    段海濱, 邱華鑫, 陳琳, 等. 無人機自主集群技術研究展望. 科技導報, 2018, 36(21):90

    Duan H B, Qiu H X, Chen L, et al. Prospects on unmanned aerial vehicle autonomous swarm technology. Sci Technol Rev, 2018, 36(21): 90
    [5]
    段海濱, 申燕凱, 王寅, 等. 2018年無人機領域熱點評述. 科技導報, 2019, 37(3):82

    Duan H B, Shen Y K, Wang Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018. Sci Technol Rev, 2019, 37(3): 82
    [6]
    Zhu T, Ling H F, He W X. A cooperative control approach of UAV autonomous formation and reconfiguration // Proceedings of 2018 Chinese Control And Decision Conference (CCDC). Shenyang, 2018: 2415
    [7]
    宗群, 王丹丹, 邵士凱, 等. 多無人機協同編隊飛行控制研究現狀及發展. 哈爾濱工業大學學報, 2017, 49(3):1

    Zong Q, Wang D D, Shao S K, et al. Research status and development of multi UAV coordinated formation flight control. J Harbin Inst Technol, 2017, 49(3): 1
    [8]
    Askari A, Mortazavi M, Talebi H A. UAV formation control via the virtual structure approach. J Aerospace Eng, 2015, 28(1): 04014047 doi: 10.1061/(ASCE)AS.1943-5525.0000351
    [9]
    Kownacki C. Multi-UAV flight using virtual structure combined with behavioral approach. Acta Mech Autom, 2016, 10(2): 92
    [10]
    Kownacki C, Ambroziak L. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs. Aerospace Sci Technol, 2017, 68: 465 doi: 10.1016/j.ast.2017.05.040
    [11]
    Mercado D A, Castro R, Lozano R. Quadrotors flight formation control using a leader-follower approach // Proceedings of 2013 European Control Conference (ECC). Zurich, 2013: 3858
    [12]
    Saska M, Baca T, Thomas J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919 doi: 10.1007/s10514-016-9567-z
    [13]
    N?geli T, Conte C, Domahidi A, et al. Environment-independent formation flight for micro aerial vehicles // Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 1141
    [14]
    Ghamry K A, Dong Y Q, Kamel M A, et al. Real-time autonomous take-off, tracking and landing of UAV on a moving UGV platform // Proceedings of 2016 24th Mediterranean Conference on Control and Automation (MED). Athens, 2016: 1236
    [15]
    Aghdam A S, Menhaj M B, Barazandeh F, et al. Cooperative load transport with movable load center of mass using multiple quadrotor UAVs // Proceedings of 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA). Qazvin, 2016: 23
    [16]
    Shin J, Kim S, Suk J. Development of robust flocking control law for multiple UAVs using behavioral decentralized method. J Korean Soc Aeronautical Space Sci, 2015, 43(10): 859
    [17]
    邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314

    Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314
    [18]
    Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE J Control Meas Syst Integration, 2015, 8(4): 285 doi: 10.9746/jcmsi.8.285
    [19]
    V?lkl B, Fritz J. Relation between travel strategy and social organization of migrating birds with special consideration of formation flight in the northern bald ibis. Philos Trans R Soc London Ser B, 2017, 372(1727): 20160235 doi: 10.1098/rstb.2016.0235
    [20]
    Ellis D H, Sladen W J L, Lishman W A, et al. Motorized migrations: the future or mere fantasy? BioScience, 2003, 53(3): 260 doi: 10.1641/0006-3568(2003)053[0260:MMTFOM]2.0.CO;2
    [21]
    Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433: 513 doi: 10.1038/nature03236
    [22]
    Simons A M. Many wrongs: the advantage of group navigation. Trends Ecol Evol, 2004, 19(9): 453 doi: 10.1016/j.tree.2004.07.001
    [23]
    Lissaman P B S, Shollenberger C A. Formation flight of birds. Science, 1970, 168(3934): 1003 doi: 10.1126/science.168.3934.1003
    [24]
    Duan H B, Qiu H X. Unmanned aerial vehicle distributed formation rotation control inspired by leader-follower reciprocation of migrant birds. IEEE Access, 2018, 6: 23431 doi: 10.1109/ACCESS.2018.2815664
    [25]
    周子為, 段海濱, 范彥銘. 仿雁群行為機制的多無人機緊密編隊. 中國科學: 技術科學, 2017, 47(3):230

    Zhou Z W, Duan H B, Fan Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese. Scientia Sinica Technologica, 2017, 47(3): 230
    [26]
    Batbayar N, Takekawa J Y, Newman S H, et al. Migration strategies of Swan Geese Anser cygnoides from northeast Mongolia. Wildfowl, 2013, 61: 90
    [27]
    Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behavior. Sci China Inf Sci, 2019, 62(1): 014201 doi: 10.1007/s11432-018-9587-0
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (2383) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频