Citation: | YAN Wen-kai, CHEN Bu-ming, LENG He, HUANG Hui, GUO Zhong-cheng, XU Rui-dong. Preparation and properties of Al-rod-Pb-0.2%Ag composite anode by surface ceramization[J]. Chinese Journal of Engineering, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002 |
[1] |
張璋, 陳步明, 郭忠誠, 等. 濕法冶金中新型鉛基陽極材料的研究進展. 材料導報, 2016, 30(10): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201619017.htm
Zhang Z, Chen B M, Guo Z C, et al. A review of the novel lead-based anode material used for hydrometallurgy. Mater Rev, 2016, 30(10): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201619017.htm
|
[2] |
Mohammadi M, Alfantazi A. The performance of Pb-MnO2 and Pb-Ag anodes in 2 Mn(Ⅱ)-containing sulphuric acid electrolyte solutions. Hydrometallurgy, 2015, 153: 134 doi: 10.1016/j.hydromet.2015.02.009
|
[3] |
Clancy M, Bettles C J, Stuart A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review. Hydrometallurgy, 2013, 131-132: 144 doi: 10.1016/j.hydromet.2012.11.001
|
[4] |
Lai Y Q, Jiang L X, Li J, et al. A novel porous Pb-Ag anode for energy-saving in zinc electro-winning: Part I: laboratory preparation and properties. Hydrometallurgy, 2010, 102(1-4): 73 doi: 10.1016/j.hydromet.2010.02.012
|
[5] |
Zhong X C, Wang R X, Xu Z F, et al. Influence of Mn2+ on the performance of Pb-Ag anodes in fluoride/chloride-containing H2SO4 solutions. Hydrometallurgy, 2017, 174: 195 doi: 10.1016/j.hydromet.2017.10.014
|
[6] |
Paliphot S, Chairuangsri T, Yottawee N, et al. Surface structure of Pb-0.5% Ag anode used in zinc electrowinning. Chiang Mai J Sci, 2006, 33(1): 67
|
[7] |
Zhang W S, Cheng C Y. Manganese metallurgy review. Part Ⅲ: Manganese control in zinc and copper electrolytes. Hydrometallurgy, 2007, 89(3-4): 178 doi: 10.1016/j.hydromet.2007.08.011
|
[8] |
Rodrigues J, Garbers D, Meyer E H O. Recent developments in the zincor cell house. Can Metall Q, 2001, 40(4): 441 doi: 10.1179/cmq.2001.40.4.441
|
[9] |
Ma R X, Cheng S Y, Zhang X Y, et al. Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning. Hydrometallurgy, 2016, 159: 6 doi: 10.1016/j.hydromet.2015.10.031
|
[10] |
Xu R D, Huang L P, Zhou J F, et al. Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning. Hydrometallurgy, 2012, 125-126: 8 doi: 10.1016/j.hydromet.2012.04.012
|
[11] |
Zhang Y C, Chen B M, Yang H T, et al. Anodic behavior and microstructure of Al/Pb-Ag anode during zinc electrowinning. Trans Nonferrous Met Soc China, 2014, 24(3): 893 doi: 10.1016/S1003-6326(14)63140-X
|
[12] |
Yamamoto Y, Fumino K, Ueda M, et al. A potentiodynamic study of the lead electrode in sulphuric acid solution. Electrochim Acta, 1992, 37(2): 199 doi: 10.1016/0013-4686(92)85003-4
|
[13] |
Dobrev T, Valchanova I, Stefanov Y, et al. Investigations of new anodic materials for zinc electrowinning. Trans Inst Met Finish, 2009, 87(3): 136 doi: 10.1179/174591909X438938
|
[14] |
Yang H T, Guo Z C, Chen B M, et al. Electrochemical behavior of rolled Pb-0.8%Ag anodes in an acidic zinc sulfate electrolyte solution containing Cl- ions. Hydrometallurgy, 2014, 147-148: 148 doi: 10.1016/j.hydromet.2014.05.004
|
[15] |
Lai Y Q, Li Y, Jiang L X, et al. Electrochemical behaviors of co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution-Tafel and EIS investigations. J Electroanal Chem, 2012, 671: 16 doi: 10.1016/j.jelechem.2012.02.011
|
[16] |
張小軍, 黃惠, 董勁, 等. 鋅電積過程中錳元素對鋁陰極的電化學行為影響. 工程科學學報, 2018, 40(7): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807005.htm
Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. Chin J Eng, 2018, 40(7): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807005.htm
|
[17] |
Kapalka A, Fóti G, Comninellis C. Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem Commun, 2008, 10(4): 607 doi: 10.1016/j.elecom.2008.02.003
|
[18] |
Rashkov S, Stefanov Y, Noncheva Z, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc Ⅱ. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction. Hydrometallurgy, 1996, 40(3): 319 doi: 10.1016/0304-386X(95)00010-E
|
[19] |
Lassali T A F, Boodts J F C, Bulhoes L O S. Faradaic impedance investigation of the deactivation mechanism of Ir-based ceramic oxides containing TiO2 and SnO2. J Appl Electrochem, 2000, 30(5): 625 doi: 10.1023/A:1003901520705
|
[20] |
Xu L K, Santlebury J D. Microstructure and electrochemical properties of IrO2 Ta2O5-coated titanium anodes. J Electrochem Soc, 2003, 150(6): B254 doi: 10.1149/1.1569479
|
[21] |
唐嫻, 張雷, 王竹, 等. SO42-對含Cl-溶液中316L奧氏體不銹鋼鈍化行為及點蝕行為的影響. 工程科學學報, 2018, 40(3): 366 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803013.htm
Tang X, Zhang L, Wang Z, et al. Effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel in a Cl--containing solution. Chin J Eng, 2018, 40(3): 366 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803013.htm
|
[22] |
Alves V A, da Silva L A, Boodts J F C. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochim Acta, 1998, 44(8-9): 1525 doi: 10.1016/S0013-4686(98)00276-X
|