<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
CHEN Kai-lai, WANG De-yong, QU Tian-peng, TIAN Jun, WANG Hui-hua. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel[J]. Chinese Journal of Engineering, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001
Citation: CHEN Kai-lai, WANG De-yong, QU Tian-peng, TIAN Jun, WANG Hui-hua. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel[J]. Chinese Journal of Engineering, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001

Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel

doi: 10.13374/j.issn2095-9389.2018.11.02.001
More Information
  • Corresponding author: QU Tian-peng, E-mail: qutianpeng@suda.edu.cn
  • Received Date: 2018-11-02
  • Publish Date: 2019-10-01
  • In steelmaking process, nonmetallic inclusions are often considered to be detrimental to the mechanical properties and product quality of steel as they influence the microstructure of the steel matrix to a large extent, and thus, much industrial efforts are being made to promote inclusion removal by upward flotation. From this point of view, inclusions with large size are favorable; however, quality problems or mechanical defects are more likely to happen if some of them remain in the steel. In addition, fine nonmetallic inclusions can be utilized as nucleation sites of acicular ferrite during phase transformation to improve the steel strength by promoting the formation of a fine-grained structure; this procedure is known as oxide metallurgy. In both cases, the key issue is to control the size of inclusion particles. The main factor affecting inclusion size is the collision, agglomeration, and coalescence behavior of inclusions in the molten steel. Interfacial characteristics between inclusions and steel melts are known to have a significant influence on this coalescence behavior. To analyze this influence mechanism in depth, physical and numerical simulation methods were applied to investigate the effects of inclusion type, interfacial tension, and viscosity on droplet coalescence. Based on the similarity principle, water and organic reagents were chosen to simulate molten steel and liquid nonmetallic inclusions, respectively, in the physical modeling part. The results indicate that the coalescence tendency of inclusion droplets is closely related to the physical properties of the droplets. The interfacial tension between the droplet phase and the continuous phase promotes the mutual aggregation of droplets, while the viscosity of droplets plays an inhibitory role during the aggregation process. Therefore, it is feasible to achieve aggregation or dispersion of inclusions in liquid steel by changing interfacial or viscosity parameters, thereby realizing flexible control of the inclusions particle size.

     

  • loading
  • [1]
    朱苗勇, 蕭澤強. 鋼的精煉過程數學物理模擬. 北京: 冶金工業出版社, 1998

    Zhu M Y, Xiao Z Q. Physical and Numerical Simulation of Refining Process of Molten Steel. Beijing: Metallurgical Industry Press, 1998
    [2]
    Yao J, Qu X H, He X B, et al. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel. Int J Miner Metall Mater, 2012, 19(7): 608 doi: 10.1007/s12613-012-0602-6
    [3]
    徐迎鐵, 陳兆平, 楊寶權. 軸承鋼Ds類大顆粒夾雜物研究. 煉鋼, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm

    Xu Y T, Chen Z P, Yang B Q. Study of large size Ds type inclusions in bearing steel. Steelmaking, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm
    [4]
    朱藤輝, 陳輝, 劉艷, 等. Al對鋼軌堆焊焊縫中氣孔、夾雜物及沖擊韌性的影響. 焊接, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm

    Zhu T H, Chen H, Liu Y, et al. Effect of Al on stomata, inclusion and impact toughness in rail surfacing weld. Weld Join, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm
    [5]
    Pamnani R, Jayakumar T, Vasudevan M, et al. Investigations on the impact toughness of HSLA steel arc welded joints. J Manuf Processes, 2016, 21: 75 doi: 10.1016/j.jmapro.2015.11.007
    [6]
    Taniguchi S, Kikuchi A, Ise T, et al. Model experiment on the coagulation of inclusion particles in liquid steel. ISIJ Int, 1996, 36(Suppl): S117 doi: 10.2355/isijinternational.36.Suppl_S117
    [7]
    鄭淑國, 朱苗勇. 偏心底吹氬鋼包內夾雜物行為的物理模擬. 鋼鐵研究學報, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm

    Zheng S G, Zhu M Y. Physical modeling of inclusion behavior in ladle with eccentric bottom blowing argon. J Iron Steel Res, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm
    [8]
    Arai H, Matsumoto K, Shimasaki S, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
    [9]
    Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles. ISIJ Int, 2001, 41(2): 151 doi: 10.2355/isijinternational.41.151
    [10]
    Mhatre S, Deshmukh S, Thaokar R M. Electrocoalescence of a drop pair. Phys Fluids, 2015, 27(9): 092106 doi: 10.1063/1.4931592
    [11]
    Lou W T, Zhu M Y. Numerical simulations of inclusion behavior in gas-stirred ladles. Metall Mater Trans B, 2013, 44(3): 762 doi: 10.1007/s11663-013-9802-3
    [12]
    Chen G J, He S P, Li Y G, et al. Modeling dynamics of agglomeration, transport, and removal of Al2O3 clusters in the Rheinsahl-Heraeus reactor based on the coupled computational fluid dynamics-population balance method model. Ind Eng Chem Res, 2016, 55(25): 7030 doi: 10.1021/acs.iecr.6b00586
    [13]
    Guo L F, Li H, Wang Y, et al. Simulation on agglomeration of liquid inclusion particles in steel based on VOF model. Adv Mater Res, 2012, 538-541: 525 doi: 10.4028/www.scientific.net/AMR.538-541.525
    [14]
    Demond A H, Lindner A S. Estimation of interfacial tension between organic liquids and water. Environ Sci Technol, 1993, 27(12): 2318 doi: 10.1021/es00048a004
    [15]
    Peters F, Arabali D. Interfacial tension between oil and water measured with a modified contour method. Colloids Surf A, 2013, 426: 1 doi: 10.1016/j.colsurfa.2013.03.010
    [16]
    Sahai Y, Emi T. Criteria for water modeling of melt flow and inclusion removal in continuous casting tundishes. ISIJ Int, 1996, 36(9): 1166 doi: 10.2355/isijinternational.36.1166
    [17]
    劉世平, 李佟茗, 賈紹義. 兩個液滴之間的聚并. 物理化學學報, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108

    Liu S P, Li T M, Jia S Y. Coalescence between two small liquid drops. Acta Phys-Chim Sin, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108
    [18]
    劉世平, 李佟茗, 張騰燕. 湍流分散系統中的液滴聚并. 化工學報, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003

    Liu S P, Li T M, Zhang T Y. Drop coalescence in turbulent dispersions. CIESC J, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003
    [19]
    Liu S P, Li D M. Drop coalescence in turbulent dispersions. Chem Eng Sci, 1999, 54(23): 5667 doi: 10.1016/S0009-2509(99)00100-1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (1672) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频