Citation: | WANG Wei, HUANG Yu-xing, YU Hong-min. Data mining of deep drawing simulation results based on CART decision tree theory[J]. Chinese Journal of Engineering, 2018, 40(11): 1373-1379. doi: 10.13374/j.issn2095-9389.2018.11.011 |
[4] |
Fayyad U M, Piatetasky-Shapiro G, Smyth P. From Data Mining to Knowledge Discovery:An Overview. Advances in Knowledge Discovery and Data Mining. Menlo Park:American Association for Artificial Intelligence, 1996
|
[6] |
Hu J, Peng Y H, Li D Y, et al. Robust optimization based on knowledge discovery from metal forming simulation. J Mater Process Technol, 2007, 187-188:698
|
[7] |
Salehi M S, Serajzadeh S. A model to predict recrystallization kinetics in hot strip rolling using combined artificial neural network and finite elements. J Mater Eng Perform, 2009, 18(9):1209
|
[8] |
Zheng G J, Zhang J W, Hu P, et al. Optimization of hot forming process using data mining techniques and finite element method. Int J Automotive Technol, 2015, 16(2):329
|
[13] |
Breiman L, Friedman J, Olshen R, et al. Classification and Regression Trees. New York:Routledge, 1984
|
[15] |
Rutkowski L, Jaworski M, Pietruczuk L, et al. The CART decision tree for mining data streams. Inf Sci, 2014, 266:1
|
[17] |
Nelli F. Python Data Analytics:Data Analysis and Science Using Pandas, Matplotlib, and the Python Programming Language. Berkeley:APress, 2015
|