<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
MAO Ming-tao, GUO Han-jie, SUN Xiao-lin, WANG Fei. Recent progress on primary carbides in AISI H13 hot work mold steel[J]. Chinese Journal of Engineering, 2018, 40(11): 1288-1299. doi: 10.13374/j.issn2095-9389.2018.11.002
Citation: MAO Ming-tao, GUO Han-jie, SUN Xiao-lin, WANG Fei. Recent progress on primary carbides in AISI H13 hot work mold steel[J]. Chinese Journal of Engineering, 2018, 40(11): 1288-1299. doi: 10.13374/j.issn2095-9389.2018.11.002

Recent progress on primary carbides in AISI H13 hot work mold steel

doi: 10.13374/j.issn2095-9389.2018.11.002
  • Received Date: 2018-05-29
  • This paper reviewed the recent development of primary carbides in H13 steel from the aspects of solidification segregation theory, solidification method, production process, and alloy design. The relationship between the production process of H13 steel and the characteristics of primary carbides was clarified. During the solidification of H13 steel, primary carbides can be easily generated by dendritic segregation. The primary carbides in H13 steel can be divided into polygonal, stripy, blocky, and eutectic structures according to the different shapes and can be divided into MC, M2C, M7C3, and M23C6 according to the different structures. The primary carbides can also be classified as Mo-rich, V-rich, and Ti/Nb-rich carbides according to the different compositions. Primary carbides are detrimental to the performance of H13 steel because cracks can easily form around primary carbides during service of the materials. The widely used methods of controlling the primary carbides in H13 steel under industrial production conditions, including solidification control, modification treatment, high-temperature diffusion of the ingot, and alloy composition optimization, were introduced. Modification treatment and solidification control are able to control the size and quantity of primary carbides but are unable to avoid the precipitation of primary carbides entirely. The stability of primary carbides can be relieved by composition optimization. High-temperature homogenization treatment of ingot is the most important means of controlling primary carbides in H13 steel. However, the heating temperature and holding time need further investigation.

     

  • loading
  • [1]
    Shi C B, Chen X C, Guo H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44(2):378
    [7]
    Xie Y, Cheng G G, Meng X L, et al. Precipitation behavior of primary precipitates in Ti-microalloyed H13 tool steel. ISIJ Int, 2016, 56(11):1996
    [8]
    Meng Y, Sugiyama S, Soltanpour M, et al. Effects of predeformation and semi-solid processing on microstructure and mechanical properties of Cr-V-Mo steel. J Mater Process Technol, 2013, 213(3):426
    [14]
    Li J, Li J, Wang L L, et al. Study on carbide in forged and annealed H13 hot work die steel. High Temp Mater Processes, 2015, 34(6):593
    [19]
    Xie Y, Cheng G G, Chen L, et al.Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel. ISIJ Int, 2016, 56(6):995
    [20]
    Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel.Can Metall Q, 2016, 55(3):321
    [21]
    Xie Y, Cheng G G, Chen L, et al. Generating mechanism of large heterogeneous carbonitrides with multiple layers in H13+Nb bar. Steel Res Int, 2017, 88(1):1600119
    [23]
    Wang H, Li J, Shi C B, et al. Evolution of carbides in H13 steel in heat treatment process. Mater Trans, 2017, 58(2):152
    [24]
    Wieczerzak K, Bała P, Steþień M, et al. The characterization of cast Fe-Cr-C alloy. Arch Metall Mater, 2015, 60(2):779
    [25]
    Hillert M, Qiu C. A reassessment of the Fe-Cr-Mo-C system. J Phase Equilib, 1992, 13(5):512
    [26]
    Kroupa A, Havránková J, Svoboda M, et al. Phase diagram in the iron-rich corner of the Fe-Cr-Mo-V-C system below 1000 K. J Phase Equilib, 2001, 22(3):312
    [27]
    Doanğ N, Hawk J A, Laird G. Solidification structure and abrasion resistance of high chromium white irons.Metall Mater Trans A, 1997, 28(6):1315
    [28]
    Tabrett C P, Sare I R, Ghomashchi M R. Microstructure-property relationships in high chromium white iron alloys.Metall Rev, 1996, 41(2):59
    [29]
    Inoue A, Harakawa Y, Oguchi M, et al. Metastable MC phase in melt-quenched Fe-C-V and Fe-C-V-(Cr or Mo) alloys-mechanical properties and powder-forming tendency by comminution. J Mater Sci, 1986, 21(4):1310
    [31]
    Zhou J, Ma D S, Chi H X, et al. Microstructure and properties of hot working die steel H13MOD. J Iron Steel Res Int, 2013, 20(9):117
    [32]
    Malinochka Y N, Olikhova M A, Makogonova T I. Carbide eutectic in vanadium steels.Met Sci Heat Treat, 1979, 21(3):171
    [37]
    Mishnaevsky L L, Lippmann N, Schmauder S. Micromechanisms and modelling of crack initiation and growth in tool steels:role of primary carbides.Zeitschrift für Metallkunde, 2003, 94(6):676
    [41]
    Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion.Metall Trans A, 1981, 12(6):965
    [46]
    Yurko J A, Martinez R A, Flemings M C. Commercial development of the semi-solid rheocasting (SSRTM) process.Metall Sci Technol, 2003, 21(1):10
    [47]
    Haga T, Kapranos P. Simple rheocasting processes. J Mater Process Technol, 2002, 130-131:594
    [50]
    Lan J, He J J, Ding W J, et al. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2Mo-1.0V steel. ISIJ Int, 2000, 40(12):1275
    [53]
    Kheirandish S, Noorian A. Effect of niobium on microstructure of cast AISI H13 hot work tool steel. J Iron Steel Res Int, 2008, 15(4):61
    [56]
    Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel.Int J Miner Metall Mater, 2014, 21(11):1062
    [63]
    Flemings M C. Behavior of metal alloys in the semisolid state.Metall Trans A, 1991, 22(5):957
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (890) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频