Citation: | WANG Xue, WANG Quan, ZHANG Bin, NI Wen, JIN Rong-zhen, ZHAO Ke. Hydration mechanism of using steel slag as binder for backfill materials in potash mines[J]. Chinese Journal of Engineering, 2018, 40(10): 1177-1186. doi: 10.13374/j.issn2095-9389.2018.10.004 |
[1] |
Fall M, Benzaazoua M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cem Concr Res, 2005, 35(2):301
|
[2] |
Fall M, Pokharel M. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills:portland cement-paste backfill. Cem Concr Compos, 2010, 32(10):819
|
[3] |
Ghirian A, Fall M. Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. Part I:physical, hydraulic and thermal processes and characteristics. Eng Geol, 2013, 164:195
|
[4] |
Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manage, 2013, 131:138
|
[15] |
Shi C J. Steel slag-its production, processing, characteristics, and cementitious properties. J Mater Civ Eng, 2004, 16(3):230
|
[16] |
Wang Q, Yan P Y, Yang J W, et al. Influence of steel slag on mechanical properties and durability of concrete. Constr Build Mater, 2013, 47:1414
|
[22] |
Lea F M. The Chemistry of Cement and Concrete. London:Edward Arnold Ltd, 1970
|
[23] |
Grishchenko R O, Emelina A L, Makarov P Y. Thermodynamic properties and thermal behavior of Friedel's salt. Thermochim Acta, 2013, 570:74
|
[24] |
Segni R, Vieille L, Leroux F, et al. Hydrocalumite-type materials:1. interest in hazardous waste immobilization. J Phys Chem Solids, 2006, 67(5-6):1037
|
[25] |
Houri B, Legrouri A, Barroug A, et al. Removal of chromate ions from water by anionicc clays. J Chim Phys Phys, 1999, 96(3):455
|
[26] |
Suryavanshi A K, Scantlebury J D, Lyon S B. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate. Cem Concr Res, 1996, 26(5):717
|
[27] |
Vieille L, Rousselot I, Leroux F, et al. Hydrocalumite and its polymer derivatives. 1. Reversible thermal behavior of Friedel's salt:a direct observation by means of high-temperature in situ powder X-ray diffraction. Chem Mater, 2003, 15(23):4361
|
[28] |
Yue Y F, Wang J J, Basheer P A M, et al. Raman spectroscopic investigation of Friedel's salt. Cem Concr Compos, 2018, 86:306
|
[29] |
Birnin-Yauri U A, Glasser F P. Friedel's salt, Ca2Al (OH)6(Cl,OH)·2H2O:its solid solutions and their role in chloride binding. Cem Concr Res, 1998, 28(12):1713
|
[30] |
Qin L Q, Huang Z X, Zhang L M, et al. Flame-retardant mechanism of magnesium oxychloride in epoxy resin. J Wuhan Univ Technol-Mater Sci Ed, 2009, 24(1):127
|
[31] |
Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res, 2005, 35(6):1155
|
[32] |
Wang S P, Peng X Q, Geng J, et al. Synthesis of calcium silicate hydrate based on steel slag with various alkalinitie. J Wuhan Univ Technol-Mater Sci Ed, 2014, 29(4):789
|
[33] |
Black L, Garbev K, Beuchle G, et al. X-ray Photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthsised by reactive milling. Cem Concr Res, 2006, 36(6):1023
|
[34] |
Bothe Jr J V, Brown P W. PhreeqC modeling of Friedel's salt equilibria at 23±1℃. Cem Concr Res, 2004, 34(6):1057
|