<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
YANG Jian-ming, QIAO Lan, LI Yuan, LI Qing-wen, LI Miao. Effect of bedding dip on energy evolution and rockburst tendency of loaded phyllite[J]. Chinese Journal of Engineering, 2019, 41(10): 1258-1265. doi: 10.13374/j.issn2095-9389.2018.09.18.003
Citation: YANG Jian-ming, QIAO Lan, LI Yuan, LI Qing-wen, LI Miao. Effect of bedding dip on energy evolution and rockburst tendency of loaded phyllite[J]. Chinese Journal of Engineering, 2019, 41(10): 1258-1265. doi: 10.13374/j.issn2095-9389.2018.09.18.003

Effect of bedding dip on energy evolution and rockburst tendency of loaded phyllite

doi: 10.13374/j.issn2095-9389.2018.09.18.003
More Information
  • Corresponding author: LI Yuan, E-mail: liyuan@ustb.edu.cn
  • Received Date: 2018-09-18
  • Publish Date: 2019-10-01
  • During the mining of deeply metal ore bodies, the accumulation and release of the strain energy of the surrounding rock is one of the causes of catastrophes. However, there are a large number of random distribution joints and fractures in a rock mass, which makes the evolution of strain energy more complicated and the catastrophe more difficult to predict. Therefore, five phyllites with different bedding dip angles were selected for uniaxial loading and unloading tests to investigate the effects of bedding dips on energy evolution and rock burst tendency during deformation and failure of phyllites. The strain energy evolutions of each rock sample are similar, showing energy accumulation before the peak stress and energy release and dissipation after the peak stress. However, with the increase of the bedding dip angle, the energy storage limit, residual elastic energy, and maximum dissipation energy show U-shape, and the minimum value is obtained at 60° by fitting. With the increase of the bedding dip angle, the ratio of the elastic energy of rock samples changes in an inverted U-shape before the peak, and the maximum value is obtained at 60°, indicating that the minimum work is done for bedding dip angle at 60° before peak. Moreover, the maximum elastic energy efficiency changes slightly with the increase of the bedding dip, which shows that the influence of bedding dip angle on the energy storage efficiency is small before the peak. After the peak, the decrease range of the elastic energy ratio is 60°→45°→ 30°→ 90°→0°, indicating that the post-peak fracture of the rock sample with 90° is the least developed and shows the greatest lithologic brittleness. A new criterion modified impact energy index (W) was established by combining the advantages of elastic deformation energy index (Wet) and impact energy index (Wcf). The W value of rock samples is calculated as 60°→45°→30°→90°→0° from small to large.

     

  • loading
  • [1]
    謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703001.htm

    Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703001.htm
    [2]
    譚以安. 巖爆特征及巖體結構效應. 中國科學(B輯化學生命科學地學), 1991(9): 985 https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199109013.htm

    Tan Y A. Rockburst characteristics and rock mass structure effect. Sci Sin Chim, 1991(9): 985 https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199109013.htm
    [3]
    陳衛忠, 呂森鵬, 郭小紅, 等. 基于能量原理的卸圍壓試驗與巖爆判據研究. 巖石力學與工程學報, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003

    Chen W Z, Lü S P, Guo X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory. Chin J Rock Mech Eng, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003
    [4]
    謝和平, 彭瑞東, 鞠楊, 等. 巖石破壞的能量分析初探. 巖石力學與工程學報, 2005, 24(15): 2603 doi: 10.3321/j.issn:1000-6915.2005.15.001

    Xie H P, Peng R D, Ju Y, et al. On energy analysis of rock failure. Chin J Rock Mech Eng, 2005, 24(15): 2603 doi: 10.3321/j.issn:1000-6915.2005.15.001
    [5]
    趙忠虎, 謝和平. 巖石變形破壞過程中的能量傳遞和耗散研究. 四川大學學報: 工程科學版, 2008, 40(2): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm

    Zhao Z H, Xie H P. Energy transfer and energy dissipation in rock deformation and fracture. J Sichuan Univ Eng Sci Ed, 2008, 40(2): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm
    [6]
    謝和平, 鞠楊, 黎立云, 等. 巖體變形破壞過程的能量機制. 巖石力學與工程學報, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001

    Xie H P, Ju Y, Li L Y, et al. Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001
    [7]
    李子運, 吳光, 黃天柱, 等. 三軸循環荷載作用下頁巖能量演化規律及強度失效判據研究. 巖石力學與工程學報, 2018, 37(3): 662

    Li Z Y, Wu G, Huang T Z, et al. Variation of energy and criteria for strength failure of shale under traixial cyclic loading. Chin J Rock Mech Eng, 2018, 37(3): 662
    [8]
    陳子全, 何川, 吳迪, 等. 深埋碳質千枚巖力學特性及其能量損傷演化機制. 巖土力學, 2018, 39(2): 445 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802006.htm

    Chen Z Q, He C, Wu D, et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite. Rock Soil Mech, 2018, 39(2): 445 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802006.htm
    [9]
    張東明, 白鑫, 尹光志, 等. 含層理巖石單軸損傷破壞聲發射參數及能量耗散規律. 煤炭學報, 2018, 43(3): 646 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201803007.htm

    Zhang D M, Bai X, Yin G Z, et al. Analysis of acoustic emission parameters and energy dissipation characteristics and damage evolution of bedding rock failure process under uniaxial compression. J China Coal Soc, 2018, 43(3): 646 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201803007.htm
    [10]
    溫韜, 唐輝明, 劉佑榮, 等. 不同圍壓下板巖三軸壓縮過程能量及損傷分析. 煤田地質與勘探, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015

    Wen T, Tang H M, Liu Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures. Coal Geol Explor, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015
    [11]
    汪泓, 楊天鴻, 劉洪磊, 等. 循環荷載下干燥與飽和砂巖力學特性及能量演化. 巖土力學, 2017, 38(6): 1600 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706008.htm

    Wang H, Yang T H, Liu H L, et al. Mechanical properties and energy evolution of dry and saturated sandstones under cyclic loading. Rock Soil Mech, 2017, 38(6): 1600 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706008.htm
    [12]
    Hua A Z, You M Q. Rock failure due to energy release during unloading and application to underground rock burst control. Tunnelling Underground Space Technol, 200l, 16(3): 241 doi: 10.1016/S0886-7798(01)00046-3
    [13]
    Richard S. Analysis of Fault-slip Mechanisms in Hard Rock Mining [Dissertation]. Montreal: McGill University, 1999
    [14]
    Wang J A, Park H D. Comprehensive prediction of rock burst based on analysis of strain energy in rocks. Tunnelling Underground Space Technol, 2001, 16(1): 49 doi: 10.1016/S0886-7798(01)00030-X
    [15]
    張傳慶, 盧景景, 陳珺, 等. 巖爆傾向性指標及其相互關系探討. 巖土力學, 2017, 38(5): 1397 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705023.htm

    Zhang C Q, Lu J J, Chen J, et al. Discussion on rock burst proneness indexes and their relation. Rock Soil Mech, 2017, 38(5): 1397 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705023.htm
    [16]
    Kidybinski A. Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstr, 1981, 18(4): 295 doi: 10.1016/0148-9062(81)91194-3
    [17]
    Goodman R E. Introduction to Rock Mechanics. 2nd Ed. New York: John Wiley & Sons, 1989
    [18]
    唐禮忠, 潘長良, 王文星. 用于分析巖爆傾向性的剩余能量指數. 中南工業大學學報: 自然科學版, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004

    Tang L Z, Pan C L, Wang W X. Surplus energy index for analysing rock burst proneness. J Cent South Univ Technol Nat Sci Ed, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004
    [19]
    謝和平, 鞠楊, 黎立云. 基于能量耗散與釋放原理的巖石強度與整體破壞準則. 巖石力學與工程學報, 2005, 24(17): 3003 doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie H P, Ju Y, Li L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chin J Rock Mech Eng, 2005, 24(17): 3003 doi: 10.3321/j.issn:1000-6915.2005.17.001
    [20]
    張志鎮, 高峰. 3種巖石能量演化特征的試驗研究[J]. 中國礦業大學學報, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    Zhang Z Z, Gao F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process. J China Univ Min Technol, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm
    [21]
    郭然, 于潤滄. 新建有巖爆傾向硬巖礦床采礦技術研究工作程序. 中國工程科學, 2002, 4(7): 51 doi: 10.3969/j.issn.1009-1742.2002.07.010

    Guo R, Yu R C. Working procedure of developing a new deep hard-rock burst-prone deposit. Eng Sci, 2002, 4(7): 51 doi: 10.3969/j.issn.1009-1742.2002.07.010
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (831) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频