Citation: | WANG Rui, XIAO Bing-song. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach[J]. Chinese Journal of Engineering, 2019, 41(10): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.09.02.002 |
[1] |
Qiu H X, Wei C, Dou R, et al. Fully autonomous flying: from collective motion in bird flocks to unmanned aerial vehicle autonomous swarms. Sci China Inf Sci, 2015, 58(12): 128201 http://forest.ckcest.cn/d/hxwx/AVkJ5b--49MUqoKBOAGM.html
|
[2] |
Peng H, Huo M L, Liu Z Z, et al. Simulation analysis of cooperative target search strategies for multiple UAVs//The 27th Chinese Control and Decision Conference. Qingdao, 2015: 4855
|
[3] |
邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊. 工程科學學報, 2017, 39(3): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201703001.htm
Qiu H X, Duan H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation. Chin J Eng, 2017, 39(3): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201703001.htm
|
[4] |
Saadaoui H, El Bouanani F. Information sharing based on local PSO for UAVs cooperative search of unmoved targets//2018 International Conference on Advanced Communication Technologies and Networking (CommNet). Marrakech, Morocco, 2018: 1
|
[5] |
Yang F, Ji X L, Yang C W, et al. Cooperative search of UAV swarm based on improved ant colony algorithm in uncertain environment//2017 IEEE International Conference on Unmanned Systems. Beijing, 2017: 231
|
[6] |
Duan H B, Qiao P X. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 2014, 7(1): 24 doi: 10.1108/IJICC-02-2014-0005
|
[7] |
段海濱, 葉飛. 鴿群優化算法研究進展. 北京工業大學學報, 2017, 43(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm
Duan H B, Ye F. Progresses in pigeon-inspired optimization algorithms. J Beijing Univ Technol, 2017, 43(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm
|
[8] |
Li C, Duan H B. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. Aerosp Sci Technol, 2014, 39: 352 doi: 10.1016/j.ast.2014.10.007
|
[9] |
Zhong Y, Yao P Y, Sun Y, et al. Method of multi-UAVs cooperative search for Markov moving targets//2017 29th Chinese Control And Decision Conference (CCDC). Chongqing, China, 2017: 6783
|
[10] |
沈東, 魏瑞軒, 茹常劍. 基于數字信息素的無人機集群搜索控制方法. 系統工程與電子技術, 2013, 35(3): 591 doi: 10.3969/j.issn.1001-506X.2013.03.24
Shen D, Wei R X, Ru C J. Digital-pheromone-based control method for UAV swarm search. Syst Eng Electron, 2013, 35(3): 591 doi: 10.3969/j.issn.1001-506X.2013.03.24
|
[11] |
Kalivarapu V, Winer E. Digital pheromone implementation of PSO with velocity vector accelerated by commodity graphics hardware//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs California, 2009: 1017
|
[12] |
Bertuccelli L F, How J P. Search for dynamic targets with uncertain probability maps//2006 American Control Conference. Minneapolis, MN, USA, 2006: 737
|
[13] |
Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671 doi: 10.1126/science.220.4598.671
|
[14] |
Lan K T, Lan C H. Notes on the distinction of Gaussian and Cauchy mutations//2008 Eighth International Conference on Intelligent Systems Design and Applications. Kaohsiung, Taiwan, 2008: 272
|
[15] |
段海濱, 楊之元. 基于柯西變異鴿群優化的大型民用飛機滾動時域控制. 中國科學: 技術科學, 2018, 48(3): 277 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803004.htm
Duan H B, Yang Z Y. Large civil aircraft receding horizon control based on Cauchy mutation pigeon inspired optimization. Sci Sin Technol, 2018, 48(3): 277 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803004.htm
|