Citation: | BAO Yan-ping, ZHANG Chao-jie, WANG Min. Situation and prospect on investigation of ferroalloy reduction during steelmaking[J]. Chinese Journal of Engineering, 2018, 40(9): 1017-1026. doi: 10.13374/j.issn2095-9389.2018.09.001 |
[10] |
Bobkova O S, Barsegyan V V. Prospects of technologies for the direct alloying of steel from oxide melts. Metallurgist, 2006, 50(9-10):463
|
[11] |
Nokhrina O I, Komshukov V P, Dmitrienko V I. Developing a technology for the direct alloying of steel with manganese in an electric-arc furnace. Metallurgist, 2004, 48(5-6):264
|
[12] |
Brovko O D, Bublikov Y A, Mezhebovskii I V, et al. Direct chromium alloying of steel using poor chromium-containing raw materials. Russ Metall, 2013, 2013(12):952
|
[20] |
Pande M M, Guo M, Guo X, et al. Ferroalloy quality and steel cleanliness. Ironmaking Steelmaking, 2013, 37(7):502
|
[21] |
Gasik M I, Panchenko A I, Sal Nikov A S. Ferroalloy quality for electric steelmaking with nonmetallic inclusion control. Metall Min Ind, 2011, 3(1):1
|
[22] |
Tolymbekov M Z, Akhmetov A B, Baisanov S O, et al. Production and use of complex ferroalloys in metallurgy. Steel Transl, 2009, 39(5):416
|
[23] |
Rick C J, Engholm M. Ferroalloy design, ferroalloy selection and utilization optimization with particular focus on stainless steel materials. J South Afr Inst Min Metall, 2010, 110(12):759
|
[28] |
Ma W J, Bao Y P, Wang M, et al. Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels. ISIJ Int, 2014, 54(3):536
|
[40] |
Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe-10mass% Ni alloy. ISIJ Int, 2006, 46(1):14
|