<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
ZHU Wei-yao, WANG Ya-zhen, YUE Ming, DENG Qing-jun. Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force[J]. Chinese Journal of Engineering, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002
Citation: ZHU Wei-yao, WANG Ya-zhen, YUE Ming, DENG Qing-jun. Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force[J]. Chinese Journal of Engineering, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002

Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force

doi: 10.13374/j.issn2095-9389.2018.08.31.002
More Information
  • Corresponding author: ZHU Wei-yao, E-mail: weiyaook@sina.com
  • Received Date: 2018-08-31
  • Publish Date: 2019-10-01
  • With the development of liquid production and molecular synthesis technology, the application of soft particle solutions has become increasingly widespread. Soft particle solutions are also used in oil exploitation technology. The soft particles can be elastically deformed through the pores, and the whole process produces a resistance effect on flow. After breaking through the tunnel, the original shape is restored and continuously moved to the deep part of the oil layer. The soft particles do not only block the porous medium but also increase flow resistance. Moreover, they can generate deformation and break through the pores under a certain pressure to reach the depth of the reservoir. The microscopic forces mainly include Van der Waals force, electrostatic force, spatial configuration force, and surface tension. The effect of the spatial configuration force caused by the deformation of the soft particles affected by the tube wall action is considered to address the problem that micron-sized soft particle solutions in microtube deviate from the Poiseuille law. On the basis of Navier-Stokes theory, the flow velocity distribution and flow expression of the polymer solution in the tube were derived. A particle deformation factor was introduced to characterize the effect of the spatial configuration force. A mathematical model of microtube flow was established by considering the spatial configuration force. From the micro-scale flow characteristics experiment, the microtube flow in micron-sized soft particle solution was obtained. As evidenced by the results, when the tube diameter is smaller than the particle diameter, the flow velocity considering the spatial configuration force is closer to the experimental data than the Poiseuille flow under the same pressure gradient. Through the analysis of influencing factors, the spatial configuration force cannot be neglected in the microtube flow. Compared with the Poiseuille flow, the spatial configuration force increases and affects the microtube flow when the microtube size decreases. When the particles are non-spherical and the minimum projected area is the same, the greater the degree of deviation from the spherical particles and the greater the effect of the spatial configuration force.

     

  • loading
  • [1]
    王代流, 肖建洪. 交聯聚合物微球深部調驅技術及其應用. 油氣地質與采收率, 2008, 15(2): 86 doi: 10.3969/j.issn.1009-9603.2008.02.026

    Wang D L, Xiao J H. Application of deep-profile control and displacement technology of crosslinked polymer micro-ball system. Petrol Geol Recovery Effic, 2008, 15(2): 86 doi: 10.3969/j.issn.1009-9603.2008.02.026
    [2]
    Wu W X, Song X, Fu Y, et al. Priority selection of weak gel flooding formula on heterogeneous reservoir. Adv Mater Res, 2014, 1073-1076: 2248 doi: 10.4028/www.scientific.net/AMR.1073-1076.2248
    [3]
    Zhao G, Dai C L, You Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system. Petrol Explor Dev, 2018, 45(3): 481 doi: 10.1016/S1876-3804(18)30053-3
    [4]
    張磊, 張貴才, 葛際江, 等. 中低滲油藏pH敏感聚合物深部調驅技術. 特種油氣藏, 2016, 23(1): 135 doi: 10.3969/j.issn.1006-6535.2016.01.031

    Zhang L, Zhang G C, Ge J J, et al. pH-sensitive polymer in-depth profile control in mid-low permeability reservoirs. Spec Oil Gas Reservoirs, 2016, 23(1): 135 doi: 10.3969/j.issn.1006-6535.2016.01.031
    [5]
    Liu Z M, Pang Y. Effect of the size and pressure on the modified viscosity of water in microchannels. Acta Mech Sin, 2015, 31(1): 45 doi: 10.1007/s10409-015-0015-7
    [6]
    Dai B M, Li M X, Ma Y T. Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels. Appl Therm Eng, 2014, 67(1-2): 283 doi: 10.1016/j.applthermaleng.2014.03.028
    [7]
    Li Q, Angeli P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels. Chem Eng J, 2017, 328: 717 doi: 10.1016/j.cej.2017.07.037
    [8]
    Nissan A, Wang Q L, Wallach R. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section. Water Resour Res, 2016, 52(11): 8472 doi: 10.1002/2016WR018849
    [9]
    Wang Y Y, Xu J B, Yang C. Fluid inhomogeneity within nanoslits and deviation from Hagen-Poiseuille flow. AIChE J, 2017, 63(2): 834 doi: 10.1002/aic.15409
    [10]
    Chefranov S G, Chefranov A G. Solution to the paradox of the linear stability of the Hagen-Poiseuille flow and the viscous dissipative mechanism of the emergence of turbulence in a boundary layer. J Exp Theor Phys, 2014, 119(2): 331 doi: 10.1134/S1063776114070127
    [11]
    Metzger B, Rahli O, Yin X L. Heat transfer across sheared suspensions: role of the shear-induced diffusion. J Fluid Mech, 2013, 724: 527 doi: 10.1017/jfm.2013.173
    [12]
    Chen X D, Xue C D, Zhang L, et al. Inertial migration of deformable droplets in a microchannel. Phys Fluids, 2014, 26(11): 112003 doi: 10.1063/1.4901884
    [13]
    Lecampion B, Garagash D I. Confined flow of suspensions modelled by a frictional rheology. J Fluid Mech, 2014, 759: 197 doi: 10.1017/jfm.2014.557
    [14]
    肖前華. 典型致密油區儲層評價及滲流機理研究[學位論文]. 北京: 中國科學院大學, 2015

    Xiao Q H. The Reservoir Evaluation and Porous Flow Mechanism for Typical Tight Oilfields [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2015
    [15]
    孫業恒, 龍運前, 宋付權, 等. 低滲透油藏納微米聚合物顆粒分散體系封堵性能評價. 油氣地質與采收率, 2016, 23(4): 88 doi: 10.3969/j.issn.1009-9603.2016.04.014

    Sun Y H, Long Y Q, Song F Q, et al. Evaluation on plugging performance of aqueous dispersion system of nano/micron-sized polymer particles in low permeability reservoir. Petrol Geol Recovery Effic, 2016, 23(4): 88 doi: 10.3969/j.issn.1009-9603.2016.04.014
    [16]
    葛一凡, 張旗, 劉治田. 哌啶季銨鹽雙子表面活性劑的合成及聚集行為. 武漢工程大學學報, 2017, 39(3): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201703005.htm

    Ge Y F, Zhang Q, Liu Z T. Synthesis and aggregation behavior of gemini surfactants with piperidinium structure. J Wuhan Inst Technol, 2017, 39(3): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201703005.htm
    [17]
    陳巧麗. 微尺度下液體流動、傳熱特性及其應用研究[學位論文]. 杭州: 浙江大學, 2016

    Chen Q L. Investigations on Liquid Flow, Heat Transfer Characteristics in Microscale and Its Applications [Dissertation]. Hangzhou: Zhejiang University, 2016
    [18]
    王鳳嬌. 致密氣藏微尺度滲流機理研究[學位論文]. 大慶: 東北石油大學, 2017

    Wang F J. The Study on Micro-scale Percolation Mechanism in Tight Gas Reservoir [Dissertation]. Daqing: Northeast Petroleum University, 2017
    [19]
    Gaveau A, Coetsier C, Roques C, et al. Bacteria transfer by deformation through microfiltration membrane. J Membr Sci, 2017, 523: 446 doi: 10.1016/j.memsci.2016.10.023
    [20]
    梁棟. 球形雜原子介孔分子篩的制備、表征及應用[學位論文]. 太原: 太原理工大學, 2010

    Liang D. Synthesis, Characterization and Application of Spherical Heteroatomic Mesoporous Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2010
    [21]
    Suchecka T, Pi?tkiewicz W, Sosnowski T R. Is the cell retention by MF membrane absolutely safe-a hypothetical model for cell deformation in a membrane pore. J Membr Sci, 2005, 250(1-2): 135 doi: 10.1016/j.memsci.2004.08.035
    [22]
    王小鋒, 朱維耀, 鄧慶軍, 等. 考慮固液范德華力作用的微圓管流動數學模型. 東北石油大學學報, 2013, 37(5): 85 doi: 10.3969/j.issn.2095-4107.2013.05.012

    Wang X F, Zhu W Y, Deng Q J, et al. Micro circular pipe flow mathematical model considering the effect of Van der Walls force. J Northeast Petrol Univ, 2013, 37(5): 85 doi: 10.3969/j.issn.2095-4107.2013.05.012
    [23]
    朱維耀, 朱曉陽, 曹孟菁, 等. 微圓管中納微米聚合物流動規律. 科技導報, 2016, 34(24): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201624022.htm

    Zhu W Y, Zhu X Y, Cao M J, et al. Flow mechanism of nano-micron polymer in microtubes. Sci Technol Rev, 2016, 34(24): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201624022.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (1021) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频