Citation: | ZHANG Jie, LIU Jian-hua, YAN Bo-jun, LI Kang-wei, LIU Hong-bo, YU Sai-jian. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method[J]. Chinese Journal of Engineering, 2018, 40(8): 937-944. doi: 10.13374/j.issn2095-9389.2018.08.007 |
[2] |
Matsuno H, Kikuchi Y, Komatsu M, et al. Development of a new deoxidation technique for RH degassers. Iron Steelmaker, 1993, 20(7):35
|
[3] |
Wang L H, Lee H G, Hayes P. A new approach to molten steel refining using fine gas bubbles. ISIJ Int, 1996, 36(1):17
|
[4] |
Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation.Int Mater Rev, 2000, 45(2):59
|
[5] |
Wang L, Lee H G, Hayes P. Prediction of the optimum bubble size for inclusion removal from molten steel by flotation.ISIJ Int, 1996, 36(1):7
|
[8] |
Bradshaw A V.Kinetic aspects of vacuum refining//Conférenceplénière présentée au Congrès Internationalsur les Applications des Techniques du Vide la Métallurgie. Strasbourg, 1967
|
[9] |
Li K W, Liu J H, Zhang J, et al.Theoretical analysis of bubble nucleation in molten steel supersaturated with nitrogen or hydrogen. Metall Mater Trans B, 2017, 48(4):2136
|
[12] |
Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys, 1950, 21(10):1022
|
[14] |
Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals. Acta Metall, 1953, 1(4):428
|
[18] |
Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2):59
|
[20] |
Mourtada-Bonnefoi C C, Laporte D. Kinetics of bubble nucleation in a rhyolitic melt:an experimental study of the effect of ascent rate. Earth Planet Sci Lett, 2004, 218(3-4):521
|
[21] |
Toramaru A. Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res Solid Earth, 1995, 100(B2):1913
|