<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
CHEN Heng-zhi, YANG Jian-ping, LU Xin-chun, YU Xiang-zhuo, LIU Qing. Quality prediction of the continuous casting bloom based on the extreme learning machine[J]. Chinese Journal of Engineering, 2018, 40(7): 815-821. doi: 10.13374/j.issn2095-9389.2018.07.007
Citation: CHEN Heng-zhi, YANG Jian-ping, LU Xin-chun, YU Xiang-zhuo, LIU Qing. Quality prediction of the continuous casting bloom based on the extreme learning machine[J]. Chinese Journal of Engineering, 2018, 40(7): 815-821. doi: 10.13374/j.issn2095-9389.2018.07.007

Quality prediction of the continuous casting bloom based on the extreme learning machine

doi: 10.13374/j.issn2095-9389.2018.07.007
  • Received Date: 2017-06-12
  • To solve the problems of slow training, weak generalization ability, and low prediction accuracy in the traditional prediction model established in terms of the BP neural network, a method of the quality prediction of the continuous casting bloom based on the extreme learning machine (ELM) was proposed to predict the degree of the center porosity and the central segregation of 60Si2Mn continuous casting bloom produced by Fangda Special Steel. Comparing the prediction models of the BP neural network and the GA-BP neural network, the results show that the prediction accuracy of the model based on ELM is improved to 85% and 82.5% in the center loose and central segregation, respectively, and the operation time is reduced to 0.1 s. The model can rapidly and accurately analyze the quality of a continuous casting billet, thus providing a new method for the online application of continuous casting billet quality prediction.

     

  • loading
  • [2]
    Bouhouche S.Contribution to Quality and Process Optimization in Continuous Casting using Mathematical Modelling[Dissertation]. Freiburg:Technische Universität Bergakademie Freiberg, 2002
    [5]
    Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:a new learning scheme of feedforward neural networks//Proceedings IEEE International Joint Conference on Neural Networks. Budapest, 2004:985
    [6]
    Jing G L, Du W T, Guo Y Y. Studies on prediction of separation percent in electrodialysis process via BP neural networks and improved BP algorithms. Desalination, 2012, 291:78
    [7]
    Wang Z, Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process.ISIJ Int, 2012, 52(9):1585
    [9]
    Dong S, Wang B, Wang Z, et al.Comparison of prediction models for power draw in grinding and flotation processes in a gold treatment plant. J Chem Eng Jpn, 2016, 49(2):204
    [10]
    Hu J, Zeng X J. An efficient activation function for BP neural network//International Workshop on Intelligent Systems and Applications. Wuhan, 2009:1
    [12]
    Liu K, Guo W Y, Shen X L, et al.Research on the forecast model of electricity power industry loan based on GA-BP neural network. Energy Procedia, 2012, 14:1918
    [13]
    Ji C, Cai Z Z, Tao N B, et al.Molten steel breakout prediction based on genetic algorithm and BP neural network in continuous casting process//201231st Chinese Control Conference. Hefei, 2012:3402
    [14]
    Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification.IEEE Trans Syst Man Cybern Part B Cybern, 2012, 42(2):513
    [15]
    Yu Q, Miche Y, Séverin E, et al.Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing, 2014, 128:296
    [16]
    Deo R C, Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia.Atmos Res, 2015, 153:512
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1210) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频