<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Rui-yang, LU Tao, SUN Chun-bao, KOU Jue, WEI De-zhou. Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite[J]. Chinese Journal of Engineering, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004
Citation: ZHANG Rui-yang, LU Tao, SUN Chun-bao, KOU Jue, WEI De-zhou. Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite[J]. Chinese Journal of Engineering, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004

Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite

doi: 10.13374/j.issn2095-9389.2018.07.004
  • Received Date: 2017-11-02
  • Jordisite (MoS2) is one of the most difficult minerals to deal with in the development of molybdenum-containing mineral resources because of its characteristics of fine molybdenum content, low liberation degree, easiness of slime formation, and poor floatability. Much attention has been paid to develop an effective, economical, and eco-friendly processing method. In this study, a nonionic surfactant Tween 20 was used to improve the leaching of jordisite in the presence of Acidithiobacillus ferrooxidans. The effects of Tween 20 on the metabolic activity of A. ferrooxidans and on the bioleaching of jordisite were tested. After the bioleaching process, the jordisite was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that the addition of Tween 20 has a negative effect on the Fe2+-oxidizing activity of A. ferrooxidans, but it is favorable for the sulfur-oxidizing activity of the bacteria. When added in low and high concentrations, Tween 20 enhances and reduces the bioleaching efficiency of jordisite, respectively; thus, it has a significant influence on the bioleaching. After 40 days, a dosage of 30 mg·L-1 Tween 20 increases the molybdenum extraction yield from 42.21% to 54.10% compared with the bioleaching without Tween 20. It is found that the presence of Tween 20 can accelerate the bio-oxidation of the elemental sulfur generated in the jordisite bioleaching process, consequently increasing the bacteria concentration. Meanwhile, Tween 20 addition reduces the amount of jarosite and elemental sulfur present on the minerals surface, weakening the passivation layer on the minerals surface. This accelerates the jordisite dissolution process, thereby increasing the molybdenum leaching efficiency.

     

  • loading
  • [2]
    Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence. Geochim Cosmochim Acta, 1996, 60(19):3631
    [7]
    Duncan D W, Trussell P C, Walden C C. Leaching of chalcopyrite with Thiobacillus ferrooxidans:effect of surfactants and shaking. Appl Environ Microbiol, 1964, 12(2):122
    [8]
    Peng A A, Liu H C, Nie Z Y, et al. Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(12):3147
    [10]
    Behera S K, Sukla L B. Microbial extraction of nickel from chromite overburdens in presence of surfactant. Trans Nonferrous Met Soc China, 2012, 22(11):2840
    [11]
    Zhang R Y, Wei D Z, Shen Y B, et al. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Miner Eng, 2016, 95:74
    [12]
    Knickerbocker C, Nordstrom D K, Southam G. The role of "blebbing" in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chem Geol, 2000, 169(3-4):425
    [13]
    Tichý R, Janssen A, Grotenhuis J T C, et al. Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli, with respect to bioleaching processes. Bioresour Technol, 1994, 48(3):221
    [15]
    Nasernejad B, Kaghazchi T, Edrisi M, et al. Bioleaching of molybdenum from low-grade copper ore. Process Biochem, 1999, 35(5):437
    [16]
    Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng, 2006, 19(9):960
    [17]
    Pradhan N, Nathsarma K C, Rao K S, et al. Heap bioleaching of chalcopyrite:a review. Miner Eng, 2008, 21(5):355
    [18]
    Olson G J, Clark T R. Bioleaching of molybdenite. Hydrometallurgy, 2008, 93(1-2):10
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (786) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频