Citation: | ZHANG Yu-lin, ZHU Xin-bin, YU Pei-hang, ZUO You, ZHANG You, CHEN Fei. Friction properties of C-containing ceramic coatings on an Mg-Li alloy[J]. Chinese Journal of Engineering, 2018, 40(5): 605-611. doi: 10.13374/j.issn2095-9389.2018.05.011 |
[2] |
Laleh M, Rouhaghdam A S, Shahrabi T, et al.Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J Alloys Compd, 2010, 496(1-2):548
|
[4] |
Matykina E, Arrabal R, Monfort F, et al. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions.Appl Surf Sci, 2008, 255(5):2830
|
[5] |
Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf Coat Technol, 2007, 201(9-11):4905
|
[6] |
Yang Y, Liu Y H. Effects of current density on the microstructure and the corrosion resistance of alumina coatings embedded with SiC nano-particles produced by micro-arc oxidation. J Mater Sci Technol, 2010, 26(11):1016
|
[7] |
Li X J, Luan B L. Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Mater Lett, 2012, 86:88
|
[8] |
Lü G H, Chen H, Gu W C, et al.Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumina PEO coatings. Curr Appl Phys, 2009, 9(2):324
|
[9] |
Snizhko L O, Yerokhin A L, Pilkington A, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions.Electrochim Acta, 2004, 49(13):2085
|
[10] |
Dunleavy C S, Golosnoy I O, Curran J A, et al. Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol, 2009, 203(22):3410
|
[11] |
Feng C J, Hu S L, Jiang Y F, et al. Effects of micro-arc oxidation of Ti6Al4V alloy on adhesion property to electroless Ni-P-ZrO2 composite platings and their wear resistance. Rare Met Mater Eng, 2013, 42(12):2427
|
[12] |
Abbasi S, Golestani-Fard F, Rezaie H R, et al.MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate. Appl Surf Sci, 2012, 261:37
|
[13] |
Ma K J, Bosta M M S A, Wu W T. Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution. Surf Coat Technol, 2014, 259:318
|
[14] |
Mohammadi S, Taromi F A, Shariatpanahi H, et al. Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating.J Ind Eng Chem, 2014, 20(6):4124
|
[15] |
Hua Y, Zhang Z G, Li W. Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation. Surf Coat Technol, 2016, 291:70
|
[16] |
Wu X H, Su P B, Jiang Z H, et al. Influences of current density on tribological characteristics of ceramic coatings on ZK60 Mg alloy by plasma electrolytic oxidation. ACS Appl Mater Interfaces, 2010, 2(3):808
|
[17] |
Tsao L C. Interfacial structure and fracture behavior of 6061 Al and MAO-6061 Al direct active soldered with Sn-Ag-Ti active solder. Mater Des, 2014, 56:318
|
[18] |
Li H X, Song R G, Ji Z G. Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy. Trans Nonferrous Met Soc China, 2013, 23(2):406
|