<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 5
May  2018
Turn off MathJax
Article Contents
TANG Wei-dong, XUE Xiang-xin, YANG Song-tao, JIANG Tao. Mineralogical characteristics and isothermal oxidation kinetics of Hongge chromium containing vanadium and titanium magnetite pellets[J]. Chinese Journal of Engineering, 2018, 40(5): 548-556. doi: 10.13374/j.issn2095-9389.2018.05.004
Citation: TANG Wei-dong, XUE Xiang-xin, YANG Song-tao, JIANG Tao. Mineralogical characteristics and isothermal oxidation kinetics of Hongge chromium containing vanadium and titanium magnetite pellets[J]. Chinese Journal of Engineering, 2018, 40(5): 548-556. doi: 10.13374/j.issn2095-9389.2018.05.004

Mineralogical characteristics and isothermal oxidation kinetics of Hongge chromium containing vanadium and titanium magnetite pellets

doi: 10.13374/j.issn2095-9389.2018.05.004
  • Received Date: 2017-07-07
  • The isothermal oxidation kinetics and mineralogical characteristics of Hongge chromium containing vanadium and titanium magnetite (HCVTM) pellets were investigated. The experiments related to the isothermal oxidation kinetics were performed over a temperature range of 1073 to 1373 K and a time range of 10 to 60 min. First, the microstructure and variations in the mineral composition of the pellets were analyzed. Further, the oxidation rate and its change regulation were calculated and analyzed by combining the defined oxidation rate function, and the effects of the mineral phase structures on the rate of oxidation were determined. Finally, the modified oxidation rate function, Arrhenius equation, reaction rate constant, correction factor, and reaction activation energy were calculated by combining the shrinking core model, and the restrictive step in the oxidation reaction was determined. The results depict that an increase in temperature causes an increase in the low melting point liquid phase; formation, growth, and recrystallization of hematite grains; and formation of a bonding phase. Additionally, it causes a decrease in the number of interspaces. With an increase in time, the bonding and growth of hematite grains are promoted due to the generation of a liquid phase. However, the structure of pellets is observed to deteriorate due to the formation of silicate and perovskite phases. Meanwhile, perovskite, and pseudobrookite phases are also generated. Oxidation rate decreased with increasing time due to the decrease in the number of interspaces and bonding phases. In HCVTM pellets, the oxidation reaction is controlled by diffusion. The activation energy of the initial reaction is 13.74 kJ·mol-1 while that of the latter reaction is 3.58 kJ·mol-1. Further, the corrected parameter for the oxidation rate function is observed to be 0.03.

     

  • loading
  • [17]
    Zhang H Q, Fu J T. Oxidation behavior of artificial magnetite pellets. Int J Miner Metall Mater, 2017, 24(6):603
    [18]
    Zhang J L, Wang Z Y, Xing X D, et al. Effect of aluminum oxide on the compressive strength of pellets. Int J Miner Metall Mater, 2014, 21(4):339
    [19]
    Sardari A, Alamdari E K, Noaparast M, et al. Kinetics of magnetite oxidation under non-isothermal conditions. Int J Miner Metall Mater, 2017, 24(5):486
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (821) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频